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Abstract. Cloud computing aims to make a large selection of sophis-
ticated technologies available to users for deployment and migration.
In reality, once a cloud service provider has been chosen, migration is
often a costly and time-consuming process. This paper presents Multi-
Box, a lightweight container technology that facilitates flexible vendor-
independent migration. Our framework allows its users to deploy and
migrate almost any application in its normal state with minimal compu-
tational and network resource overheads. We show that the performance
overhead of deploying within a lightweight container is 4.90% of the re-
sources available to an average VM and downtime during a migration is
less than the time needed to scale a server using provider-centric tools.

Keywords: cloud computing, multi-cloud systems, containers, workload migra-
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1 Introduction

The vision behind cloud computing is about liberating applications from the
underlying resources, and allowing them to flexibly adapt according to their
demand in order to optimise their operation. The current reality of cloud com-
puting, however, is that such idealistic freedom does not exist. Cloud service
providers (CSPs) do not support cross-provider workload management or mi-
gration. Some standardisation efforts subsist1 but are yet largely disregarded by
CSPs (for obvious commercial reasons) and by developers alike [1]. In face of
such well-documented vendor-lockin (cf. [2, 3]), workload migration becomes a
challenging, manual and bespoke effort to take into account the CSPs’ diver-
gent application programming interfaces (APIs), the multitude of heterogeneous
services, and disparate pricing schemes.

Additionally, current workload migration approaches are inattentive to net-
work overheads which makes them unsuitable for deployments over long-latency
networks and, potentially, rather costly. This limits many application deploy-
ments both geographically and dynamically, posing serious restrictions over the

1 http://www.occi-wg.org/



ability of an application to adapt to its demand. This is unsatisfactory at a time
when application lifespans are becoming more volatile in light of agile develop-
ment cycles of different resource usage profiles, and the use of social media that
can cause sudden and dramatic unexpected demand fluctuations and geograph-
ical spread.

In this paper, we define workload fluidity as the capability to migrate one
or more applications from one CSP to another at short notice with little or no
human intervention. Our key contribution is a method of achieving workload
fluidity by utilising extremely lightweight containers based on a relatively new
addition to the Linux kernel, known as control groups (cgroups)2.

We use the term ‘container’ to refer to a lightweight isolated environment
wherein applications can be deployed, whilst staying decoupled from the host.
Such execution environment is similar to a virtual machine (VM) but without
a complete operating system (OS). Crucially, we focus on a highly flexible de-
coupling that supports an extremely low performance overhead, and reduces
migration time and complexity to an absolute minimum.

The contributions of our MultiBox framework we present here are as follows:

1. A means of deploying both stateful and stateless applications (in their normal
condition) to an environment decoupled from the host and other applications
running inside it;

2. Our containers do not require the cooperation of CSPs as long as they provide
Linux VMs, a novel contribution;

3. Reducing the impact of migrating an application when compared to other
means including CSP-centric tools; and

4. Accommodating a wider range of applications with less complexity and per-
formance overhead than other similar approaches.

These contributions are aimed at reducing development time spent on work-
load management, and at expanding a business’s choice of CSPs by negating
the need for CSP cooperation. They also support workload incubation in a lo-
cal execution environment and cost-effective deployment and migration where
connectivity is limited and/or costly.

The remainder of the paper is organised as follows: §2 outlines related work.
§3 describes the MultiBox requirements and design. §4 details the technical im-
plementation. §5 evaluates workload migration using MultiBox through use cases
on two contrasting CSPs. §6 concludes and highlight future directions.

2 Related Work

Existing work on cloud workload management falls into two categories: inside-
out and outside-in. Inside-out approaches focus on altering the application code
to manage dependencies and enable cross-compatibility. This is highly complex
as it requires the developers to be aware of the needs of the application before

2 https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt



it is deployed and to alter the programming process to meet the needs of the
toolkit being used [4–6]. Outside-in approaches, on the other hand, focus on
managing the cloud infrastructure that supports given applications so that the
same business objectives can be achieved via cloud brokerage. This generally
limits an environment to one stateless application. The role of the cloud broker
can be highly complex as it needs to be aware of the application, the CSPs
involved and the interfaces to connect to each CSP. It may also include a decision-
making engine supporting policies, negotiation and enforcement [7–9].

What is considered ‘traditional’ cloud deployment management is done through
VMs, a heavyweight task requiring substantial computational resources to run
a complete guest OS as well as high bandwidth for migrating VMs. Current lit-
erature on workload migration deals in one way or another with the substantial
overhead of shifting VM images either within (cf. [10, 11]) or between datacenters
(cf. [12, 13]). However, all previous work avoids the real issue of inter-cloud mi-
gration by assuming a common API either of a single CSP (the former examples)
or a federation of clouds (the latter).

Another approach is to avoid shifting heavy VMs and instead attempt to
recreate deployments through Configuration Management Tools (CMTs). CMTs,
such as Chef3 and Ansible4, allow for the definition of an infrastructure in the
form of code. Apart from the fact that they are catered towards VM-based
appliances not containers, CMTs are transitional and non-deterministic: They
assume a certain initial state, usually a blank OS, then alter this state rather
than defining it. This more often than expected leads to undesirable results in
different environments (CSPs, OSs) [14].

To our knowledge, no other work has tackled workload migration as repre-
sented by containers as a resource-efficient and CSP-independent solution.

Previous efforts, however, have differed on defining a container. Some have a
limited view and only encapsulate a certain application such as a web service [15,
16] as a monolithic appliance. The Elastic Application Container (EAC) [17] has
a more generic definition that includes any application, but only allows for one
instance per container. The EAC architecture prioritises container scalability and
low overhead but not portability: EACs are managed by an Elastic Application
Server which is analogous to a hypervisor running in the host OS. In contrast,
our containers run using the Linux native cgroups, further reducing management
overhead and supporting portability to any Linux host.

Our definition of a container agrees with those of technologies such as Docker5,
Linux-VServer6 and OpenVZ7: a highly flexible abstraction of OS capabilities
to enable applications to run in a virtual environment with low performance
overhead, and at low migration time and complexity. Many of the mentioned
solutions, however, are designed to cater for immutable appliances. They do not

3 http://www.chef.io/
4 http://www.ansible.com/
5 http://www.docker.com/
6 http://linux-vserver.org/
7 http://openvz.org/



include system services and daemons necessary for running stateful applications
or operating multiple thereof.

3 MultiBox Design

We opt for a minimalist container-driven design to offer the user flexibility, low
performance overhead and the capability to migrate applications quickly. We
draw a parallel between the exokernel8 approach to OS kernels and our approach
to containers in that we “give as much safe, efficient control over system resources
as possible” [18]. To do this, we design a lightweight implementation that makes
heavy use of Linux control groups, an existing feature in modern Linux kernels.

3.1 Requirements

Our container implementation must be lightweight so that it does not occupy no-
ticeable resources on the VM. This is important for two reasons. First, resources
occupied on the VM are unavailable to the container. A sizeable implementa-
tion could mean that a tradeoff emerges between cost savings in migratability
and cost savings in VM size. Second, a smaller implementation is more easily
portable. As our key aim is portability, this can be partially achieved by reducing
the number of framework files copied and compiled on each VM.

In addition to its weight, the flexibility offered to the developer is significant.
A flexible framework allows developers to deploy their applications without mod-
ifications. Typically an application may require system resources including users,
devices and storage. All of these must be visible through the container abstrac-
tion layer.

Finally, we consider compatibility. CSPs offer heterogeneous operating sys-
tem templates. There may be variance in the choice of offered distributions,
versions, architectures and packages. To facilitate mutli-cloud deployments, we
must ensure compatibility with as many CSPs as possible by connecting to the
commonalities.

3.2 Design Choices

By utilising key features present within the OS’s kernel already, there is little
duplication of code, little to install or ensure compatibility with above the kernel
and little software to transport from one server to another during migration. We
prioritise utilising kernel support and adopt a lightweight approach where this is
not possible. We rely on a one-to-one relationship between hosts and containers
to reduce the number of required costly features and restrictions. For example,
we do not superimpose a virtualised file system (such as Ploop9 or AUFS10,

8 Exokernel is an operating system kernel that forces as few abstractions as possible
onto developers.

9 http://openvz.org/Ploop
10 http://aufs.sourceforge.net/aufs.html



which can offer additional resource management tools) on to that of the host.
Additionally, we deploy our management toolkit as a single init script with a
number of connected system ‘services’. The toolkit is thus simple to use, simple
to call automatically and enables rapid installation on any Linux server.

We also rely on delta synchronisation for deployment and thus offer key sys-
tem devices and file system read-write access where other container technologies,
that rely on pre-specified metadata for deployment, do not. Specialised packages
are not needed, which enables compatibility with a wider range of applications,
including stateful applications, and enables application developers to deploy their
application as they would normally.

We recognise that migration is necessary when moving any stateful applica-
tion and aim to automate the process and reduce the migration time as much
as possible. Migrating an application manually from one server to another in-
volves installing an OS, adding common libraries, application dependencies and
the application itself and finally installing any data upon which the application
relies. However, by separating the running environment from the host’s OS, this
process can be automated. Thus, the handover time from one server to another
is reduced and no manual intervention is needed.

3.3 System Components

A MultiBox container is a versatile execution environment supporting various
processes, which are unaware of the remainder of the system. By using cgroups, a
kernel module that provides support for the separation of processes into names-
paces, a container is created as a namespace within the host to isolate its own
processes, system and network devices, and file system (as depicted in Figure 2).
The functionality given to a container constitutes a smaller subset of an OS than
that of other container managers to ensure that operation and migration over-
heads are minimised. It also includes the facilities for services, daemons, syslog,
cron and running multiple applications. It makes use of the host’s file system to
minimise complexity, maximise performance and support stateful applications.
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Fig. 1. The MultiBox Architecture



MultiBox containers are managed by a Container Manager that creates the
namespace, routes network traffic to the host and its containers, and allocates
resources to the container to support running applications. It also facilitates
user interaction with the namespace. The Container Manager manages the few
dependencies that are required outside the container. These include certain OS
networking capabilities and a compiler.

A repository is maintained from which subsequent deployments will copy an
OS template. Deltas, including the application and its dependencies, are then
synchronised from a separate location in a second pass. The duration of this
second pass depends partly on the type of application that is running within the
container, though it is expected to be small relative to the data copied in the
first pass. It also depends on the connection between the two VMs. In general,
we expect that the first pass involves more data transferred at a higher speed
than the second pass. This accounts for a potentially greater latency and lower
bandwidth between the two servers at this stage, enabling a local or development
server to synchronise with a production server elsewhere.

4 Implementation

The implementation consists of two key elements: kernel support for cgroups and
the container manager. We now describe how these elements are implemented.

4.1 Kernel Support for Control Groups

Control groups allow for a system’s resources to be divided into namespaces.
They were designed to segregate concerns within a large system that, for ex-
ample, may operate as a file server and a web server. These namespaces can
then be treated as separate systems. This works via a kernel module, written
in the C language, that isolates processes into groups. Allocated or unallocated
resources, including memory, disk and network, can be assigned to a portion of
the system. Devices can also be presented to the namespace. This portion of the
system has a directory within the main system that it uses as its root, similar
to a chroot environment. The capability to assign resources as well as processes
to a namespace makes control groups suitable for containers.

Kernel support is needed to run control groups within a VM. The lightweight
cgroups package provides this functionality that can be compiled into a standard
3.x kernel. To facilitate easy deployments, we compiled Kernel 3.14.22 with sup-
port for control groups. We also included support for paravirtualised environ-
ments to enable compatibility with a larger number of CSPs. The built kernel
was compiled into an RPM package to enable easy installation on RedHat Linux
systems such as those running RHEL, CentOS and Scientific Linux. We chose
this type of package to support a wide range of OSs easily, though other packages
could also be created to support other distributions.



4.2 Container Manager

The container manager utilises cgroups to prepare a VM to run a container
and to migrate a container from a separate VM. The container manager was
implemented as an init script supporting the five following commands.

The prepare command runs on a fresh VM to download and install the pre-
built kernel, toolkit and other packages necessary to support containers from a
central repository. It also makes configuration changes to run the new kernel,
support the OS-level IP forwarding needed to forward connections from the VM
to the container and creates the base directory for the container.

The create command initiates a fresh container the first time that contain-
ers are implemented in an environment. It downloads and extracts a blank OS
template file into the container’s root directory from a remote repository.

When a container is ready to be run, boot is invoked. It also runs as part
of the VM’s subsequent start-up sequences. It begins by detaching any existing
containers running on the VM by analysing the running processes and active
devices on the VM. It then creates a new container within a background pro-
cess on the VM, utilising the OS files located in the container’s root directory. A
virtual Ethernet and network bridge are created to support network communica-
tion between the container and the Internet. We assume that the VM has one IP
address allocated to it and nothing else running on it. Thus, we move SSH on the
VM to port 65535 and forward traffic on all other ports to the container. Then,
a virtual Ethernet device is moved to the container’s namespace and traffic is
routed through it. Finally, a subset of the standard OS initialisation commands
are run within the container to start application-dependent services.

sync creates a new SSH key pair if one does not exist on the VM. It uploads
the public key to the old VM and runs resync for the first time. This is in-
tended to be run when a migration is requested. Finally, the resync command
synchronises the container’s root directory from one host to another. It does
this by downloading deltas from the old VM using the rsync utility present in
Linux.

4.3 Overall Workflow

The container manager was integrated with a backend PHP program to make
API calls to CSPs. The overall process is as depicted in Figure 2. We have
adopted a final offline synchronisation pass as live migration techniques used in
deployments such as [19] would not have improved efficiency where an IP change
is necessary. Each step in the workflow diagram is performed once although file
deltas could be copied several times where the ratio of network throughput to
file changes is low.

We now examine each step in detail.

Allocation: A new VM is created at a CSP. This is performed by the backend
application using calls to the CSP’s API. Most CSPs expose powerful APIs,
many of which can also be used to collect data about the CSP’s offerings. As
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Fig. 2. The MultiBox Workflow

such, decisions could be made in real time concerning which CSP to deploy to,
based on usage data already collected and/or user preferences.

Preparation: Preparing a new VM with the MultiBox installer consists of a
single call to the MultiBox program. This command is also run by the backend
application. The MultiBox program downloads and installs system dependencies,
including the cgroups-enabled kernel. It also makes changes to the operating
system to support IP forwarding.

Synchronisation: Files are copied using the rsync Linux utility, which is
based on the SSH protocol. The TTL on the DNS record is lowered by the PHP
application via a call to the DNS provider’s API. A TTL of zero ensures that the
record is not cached, increasing the overhead on the DNS service but ensuring
the fastest transition.

Resynchronisation: The boot process on the new container depends on the
operating system to be booted. For example, on Red Hat Linux, the chkconfig
utility provides a list of services to be started at runtime. This is used to generate
a list of commands for execution. These commands are run in a shell in the
container’s namespace. Commands are also run on the new VM, outside the
container to forward traffic to and from the container. The container on the old
VM is shut down via a Shell command.

Deallocation: The old VM is terminated via a call to the CSP’s API and the
DNS record is re-increased via a call to the DNS provider’s API.



5 Evaluation

We confirm the efficacy of our framework in migrating stateful and stateless
applications between clouds by successfully migrating a running Minecraft game
server and an Apache web server from Softlayer to Vultr. In the case of the
stateful application, a client connected to the game server was able to reconnect
within a few seconds without changes to the connection settings or the game’s
state. In the case of the stateless application, a client browsing the hosted website
did not notice any interruption.

The result of only migrating moving parts, i.e. application-specific logic, data
and dependencies, offers improvements over full VM migration and recipe-based
deployment. In full VM migration, the whole OS and shared libraries are moved.
Such migration process moves gigabytes of data across the network and thus
cannot be achieved without noticeable interruption (and cost). By contrast, the
moving parts generally account for megabytes of data. In recipe-based deploy-
ment, there is no support for the deployment and migration of stateful appli-
cations and developer time is under greater demand with regard to recipe and
repository creation and maintenance.

We continue to evaluate the efficacy of our framework by analysing two met-
rics. First, we compare the migration-related delay and downtime with a state-
ful and a stateless application by scaling the existing VM using provider-centric
tools. Second, we measure the performance penalty of deploying and running an
application within our framework relative to deploying directly to the VM.

5.1 Deployment Overhead

To measure the performance impact of running our framework, we deployed
an instance on the Softlayer cloud11. We first ran the Geekbench Linux bench-
marking utility to obtain a score for the memory and CPU performance in 32-bit
mode. We then created a container and ran the same test within the container.

The Geekbench benchmarking utility produces scores against a 2500 base-
line score; the higher the score the better the performance. Geekbench yielded a
multi-threaded score of 7709 outside the container and 7331 inside the container.
Whereas both scores are acceptable for a VM of 4 CPU cores and 8GB memory,
there is a reduction in performance of 4.90% inside the container. As the con-
tainer’s overhead is fixed, this overhead is expected to form a larger percentage
of available resources on a small VM and a smaller percentage on a larger VM.

5.2 Migration Time

To accurately measure the migration delay and downtime, we install a stateless
web server in one container and a stateful client-server game, Minecraft, in an-
other. We then construct a simulator in PHP to initialise the migration process

11 We ran this test on Softlayer only as resources on the Vultr cloud are subject to the
‘noisy neighbours’ phenomenon.



using our framework and to record the time at different points. Both the stateful
and stateless servers are accessible via a DNS “address” record with its TTL set
to zero. The DNS server is external.

The simulator initially prompts the user for the VM’s current IP address,
and the destination CSP of choice from Softlayer and Vultr. Softlayer, IBM’s
public cloud offering, represents larger clouds with greater elasticity, complexity
and cost, while Vultr represents smaller clouds at the other end of the respective
spectrums. Each CSP has a different delay and downtime profile.

The simulator then creates a new VM with the chosen CSP, connects to the
new VM and runs prepare and sync. Then, it connects to the DNS server to
update the corresponding record and runs resync. Timestamps are taken at
the beginning, after the VM creation, after running sync and upon completion.
Thus, we obtain three time durations: the time to create the VM at the CSP;
the time to prepare, sync and boot the container; and the final switchover time.

We also continuously connect to the server running within each container.
For the stateless web server, this is achieved by periodically fetching a web page.
For the stateful game, it is achieved by running an instance of the game’s client
elsewhere. In both cases, the server is contacted via the DNS name. We record
the downtime, i.e. the time during which no server is available at that address.

We compare these times with the times taken to scale the server at the
current CSP. This is acquired by starting a timer when an upgrade process
is initialised using the CSP’s own toolkit for greater CPU, memory and disk
resources. The time taken after the request is created but before the server is
shutdown is recorded. Additionally, the time taken for the server to be booted
with the new resource set is recorded.

Figure 2 shows a comparison between these metrics after 500 seconds. Note
that in each case, the delay before taking a server offline was greater with our
migration framework but that period during which service was unavailable was
greater with the CSP-provided tools. This result is quite significant as the delay
can often be predicted and planned to reduce the impact on business operation.
Furthermore, errors during the migration process can be easily recovered from
via re-deployment, whereas errors during the upgrade process are more complex
to recover from.

5.3 Human Costs and Portability

The cost of deploying and re-deploying (i.e. migrating) MultiBox containers on
the developer is very low. The process is deterministic as dependencies are ex-
plicitly defined and natively provisioned. This is in comparison to CMTs where
the desired execution environment is surprisingly not guaranteed across CSPs
and OSs [14].

MultiBox supports portability of containers by design. The MultiBox im-
plementation (kernel and command line tools) are OS agnostic, enabling easy
deployment to any Linux-based host. This is significant as CSPs offers different
sets of Linux distributions. Such Linux-native support sets MultiBox apart in
its support for container migration from all other similar efforts.
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6 Conclusion

This paper presented MultiBox, a means of creating and migrating containers.
MultiBox containers are isolated form the rest of the host OS through the use of
Linux cgroups to create namespaces. MultiBox containers can support multiple
stateful processes as well as other OS-level services and file system.

The Linux-native aspect of MultiBox containers offer great advantages: they
are transferable to any CSP infrastructure that supports any Linux variant. This
means that CSP cooperation is not required, which is a groundbreaking advance-
ment in the area of cross-cloud computing. Furthermore, MultiBox containers are
lightweight by design and migrating them is significantly more resource efficient
than other cloud workload migration approaches.

Also presented in the paper is a preliminary evaluation of MultiBox manage-
ment and migration overheads. More experiments using larger cloud deployments
and a thorough analysis of the different overheads is planned as future work.
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