
Widening the Circle of Engagement Around
Environmental Issues using Cloud-based Tools
Yehia Elkhatib∗, Alastair L. Gemmell†, Claudia Vitolo‡, Mark E. Wilkinson§, Eleanor B. Mackay¶,

Barbara J. Percy†† ‡‡, Gordon S. Blair∗, Robert J. Gurney‡‡

∗School of Computing and Communications, Lancaster University, Lancaster LA1 4WA, UK
†Met Office, Exeter EX1 3PB, UK

‡European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK
§James Hutton Institute, Aberdeen AB15 8QH, UK

¶Centre for Ecology & Hydrology, Lancaster LA1 4AP, UK
††Institute for Environmental Analytics, Reading RG6 6BX, UK

‡‡Department of Meteorology, University of Reading, Reading RG6 6BB, UK
∗Corresponding author: {i.lastname}@lancaster.ac.uk

Abstract—Environmental data are being generated and col-
lected at unprecedented rates. However, the diversity in form
and format of these environmental assets poses challenges for
collaborative and reproducible science. Moreover, access con-
straints that surround environmental data lead to difficulty in
use and interpretation of results. Cloud computing offers high
potential to break down such barriers and engender collabora-
tion, attribution, reuse, and reproducibility. In this article we
review the design of the Environmental Virtual Observatory
pilot (EVOp) that was conceived as a cloud-enabled virtual
research space for different users interested in environmental
science, ranging from domain specialists to the general public.
We discuss the key technologies and processes used: a hybrid
cloud infrastructure; standard service interfaces; a unified service
delivery platform; and a test-driven development cycle. We
also discuss the methodology by showcasing one of the exem-
plars developed in EVOp, stressing the importance of weaving
stakeholder engagement from the beginning and throughout the
process. We also briefly highlight some of the lessons learnt of
working in an interdisciplinary team.

Index Terms—Cloud computing, Environmental information
systems, Interdisciplinary teams, Participatory design, Virtual
research environments

I. INTRODUCTION

Data are being generated and collected at an incredible
rate [1], [2]. However, computer scientists are faced with
challenges more pressing than merely enhancing technologies:
engagement and impact. This is especially true in issues relat-
ing to environmental science (ES), where important society-
wide questions are still incredibly difficult to address despite
uptake of technologies (e.g. HPC, IoT).

Environmental data comes from disparate sources over a
variety of spatial and temporal scales with different resolutions
and formats [3], [4]. They can be insufficient or incomplete [5],
[6], hard to locate [6], [7], expensive to access [7], [8], discon-
nected from metadata [5], [7], and/or require significant pre-
processing before they may be considered usable [9], [10]. It
is thus significantly difficult for an individual outside the field

of expertise to access data and predictive models1 and gain
meaningful information to answer his or her questions [11].
It is even challenging for many graduate students and early-
career researchers who work in the field of expertise [10].

Despite such challenges and great interest from the public
and policy makers, software solutions that enable improving
collective understanding are fairly few and flawed [12], [13].
Access and use of many tools and data are limited by a
variety of factors [8], [14], [15], such as a required high level
of understanding of the model and driving data, the need to
download the model or data, prerequisites for hardware and/or
software configuration in order to run a model, or even merely
prohibitive costs of access or execution.

Such an approach is no longer a realistic one to take [16],
as environmental issues are increasingly becoming subjects
of far-reaching commercial, regulatory and social policies
(cf. the Paris Agreement), and of serious public interest and
debate, with examples around the world such as floods in
the UK [17] and sub-Saharan Africa [18], and droughts in
Australia [19] and California [20], to name but a few. In this
article, we report on the experiences of the Environmental
Virtual Observatory pilot (EVOp) project [21] in addressing
many of the above issues by not just developing a cloud-based
system for integrating multi-sourced data and models, but also
adopting development and stakeholder engagement practices
that maximise the impact of the developed technology.

Funded as a two-year proof-of-concept, EVOp’s vision was
to demonstrate the possibility of developing tools that are
rooted in environmental modelling and using a myriad of
data sources, but that are easy to use by a wide variety of
stakeholders (farmers, local communities, policy makers) and
that are indeed useful for their various purposes. This paper
provides insight into the processes and technologies that were
employed in the EVOp project for this purpose.

1Henceforth, we use the term ‘model’ to refer to mathematical / algorithmic
representations of the environment used by environmental scientists to aid in
understanding natural systems and foreseeing how they change.



For this project, four exemplars were chosen to answer env-
ironmental questions that are based on different user groups,
each with varying levels of computer and scientific experience
and focusing on different levels of scale. The EVOp web
portal was developed to ensure universal access, easy and
intuitive use, as well as visual presentation and interpretation
of the results. It allows the user to investigate an environmental
issue (e.g. hydrology) through exploring a range of historical
and realtime datasets (e.g. observed rainfall, webcam imagery,
indicative flood hazard thresholds), instantly running relevant
predictive models using preset scenarios or specially defined
ones, and comparing current and previous results.

The portal relies on three key advances in distributed
computing: cloud computing, web service standards, and Web
2.0 technologies. These technologies are used to ensure a user
experience that remains wholly focused on the environment-
specific question at hand. At no time during the user’s journey
through the system should they worry about where datasets
reside or how to access them, how to find related or generally
relevant data, how to execute predictive models, or what to
make of the results they bring up. Instead, the user should
focus on such questions as “is my local area susceptible to
flood after the past few days’ rainfall?” or “what could be
done to reduce diffuse pollution affecting the North Sea?”.
Nevertheless, the user can, if they wish to, find out more about
the employed assets; e.g. a scientist who wants to know how
the data are collected or how a model is calibrated.

We introduce the work done to realise the EVOp portal
and describe the technologies behind it. We also comment on
the success of different practices in increasing the magnitude
of and widening the radius of engagement of the developed
portal. From the few use cases we developed in EVOp, we
present one use case to illustrate the added value in terms of
better communication of the impact of human intervention on
the environment. Our objective here is to provide additional
knowledge in the community when it comes to realising new
services, especially cloud-based ones, that address issues of
society-wide interest.

Our high-level contributions are as follows:
• The design of a system architecture that caters to a set

of requirements captured from the target user groups.
• How to employ key emerging technologies to implement

the designed system, integrating various data and mod-
elling resources of different sources. Moreover, this is
implemented over a hybrid cloud infrastructure in order
to avoid vendor lock-in.

• Experiences of stakeholder-oriented development
methodology to deliver useful and usable products to a
user base of varying expertise and capabilities.

• Lessons learned about an interdisciplinary team of sci-
entists working on a topic of high public and political
interest.

The rest of the paper is organised as follows. Section II
discusses related work. Section III presents the requirements of
the EVOp portal and its system architecture. Section IV details
the implementation process focusing on the three enabling

technologies: cloud computing, web service standards, and
Web 2.0 technologies. Section V presents one of the exemplars
used in developing the portal, focusing on the process followed
to create it. Section VI presents an evaluation by revisiting
the portal requirements, while Section VII discusses lessons
learned. Section VIII concludes.

II. RELATED WORK

There is a growing body of work on Green ICT, focusing
on challenges of software sustainability [22], [23], energy
efficiency [24], and automated control systems (e.g. [25]).
However, there is little work in the computer science and
software engineering (SE) literature on tool development /
adoption and associated best practices for issues of society-
wide interest. More specifically, there is little effort on creating
software to facilitate shared and open ES processes, and
support the wider societal dialogue around environmental
issues. We now review some of these efforts, highlighting their
limitations.

There are numerous works on software for ES, most of
which are stand-alone tools. Examples: Whelan et al. [26]
present desktop tools for tackling data compatibility and model
interoperability issues through semantic mediation; Wang et
al. [27] present a desktop tool for matching data from different
sources; Dauwe et al. [28] present a multi-agent framework
to fuse sensor data from different sources; the Penn State
Integrated Hydrologic Model (PIHM) [29] is a prototype
watershed model to predict water distribution.

Few efforts to date, however, capitalise on the advantages of
cloud computing, particularly how to harness ease of access
to shared infrastructure resources. Bhat et al. [30] discuss why
and how to deploy cloud-powered geographical information
systems, but their proposal is speculative and not evaluated.
Sun [31] put forward a case study of migrating a preexisting
system to the cloud and using general purpose web-tools (e.g.
Google Fusion Tables) as a front-end. Sun’s experience might
be useful for similar migration projects, but it has significant
drawbacks primarily in terms of usability and interoperability:
the front-end tools are quite generic and, based on our experi-
ence, do not engage non-domain experts; the back-end is too
bespoke and could not be used to plug in a new service or
to compose existing ones. More advanced integration of data
pipelines and workflows has been presented by Pipeline61 [32]
but, in comparison to EVOp, it lacks an engagement-lead end-
user ready interface for running integrated scientific modelling
workflows.

In terms of SE processes for interdisciplinary teams and
public stakeholders, there is gap in the literature in terms
of designing and developing software to be used by a wide
range of users of different computational abilities and interests.
Demir and Krajewski [33] describe a platform that aggregates
flood-related data to provide information to communities in
Iowa, US. However, the authors do not comment about their
development process, how the stakeholders (local communities
or otherwise) are engaged, or how to do more than just
view periodic flood forecasts (e.g. run a model on demand).



According to recent studies [34], [35], this gap in computation
time and model flexibility poses a limitation to the useful-
ness of such environmental information systems. Quiroga et
al. [36] developed an uncertainty-aware cloud-based modelling
platform. The work focuses mainly on the computational gain
and mentions little on the development process or access to
different stakeholders.

As such, the computer science and SE community is in need
of sharing experience on how to to use modern technologies
(such as the cloud, fog, and IoT) to address a wide-reaching
subject such as ES.

III. DESIGN

This section introduces the design of the EVOp infrastruc-
ture and the requirements that have driven it.

A. Requirements

The EVOp vision was to provide a multifaceted portal
that gives access to different information for various user
groups. Our target user groups are: a) environmental scientists;
b) policy makers; c) local communities directly involved such
as farmers; and d) the general public. These user groups
include both domain specialists and non-specialists, and they
cover a very wide range of potential interests. However, the
combination of knowledge from these users can aid in answer-
ing key environmental questions. For example, environmental
scientists would want to find or upload data, use it to run
predictive models, modify models to their requirements, and
compose workflows that consist of a series of data manipu-
lation procedures. An officer for a statutory authority would
be seeking answers to a ‘what if’ question that would go
some way to support their decision making processes. An
engineering consultant carrying out a field survey would find it
useful to check the current state of water levels, embankments,
vegetation, culvert obstructions, etc. against recorded values
and historical webcam images. A member of a local commu-
nity might be interested in obtaining information about the
impact of different farming and water management practices.

The above examples illustrate that the portal potentially has
to provide very different information types from a single data
set, and to present them in different ways that are accessible
and convenient for the intended user. The portal also has
to have access to a varied mixture of data sources for the
users to explore and utilise. These include live data feeds
(such as real time river level, temperature, etc.), historical time
series or spatial datasets (e.g. rainfall measurements and digital
elevation models) and others (e.g. webcam images). Such data
sources could be managed either internally by the EVOp team
or by external parties.

Beside providing information concerning different environ-
mental topics, the portal should give users the capability
to utilise the available datasets in a meaningful way. This
entails running datasets through a selection of processing
tools, including predictive models and workflows, that are
executed by users on demand. This presents requirements of

inclusiveness (of different data types and model environments)
and elasticity.

The resulting set of requirements could be distilled as:
• Flexibility: The infrastructure should have fundamental

support for assets of varied types and sources.
• Scalability: The portal should enable rapid access to ad-

ditional resources to cater to user and asset management
demands.

• Interoperability: The portal should rely on open standards
to ensure interoperability in order to access external
resources, to compose new services, etc.

• Transparency: The portal should abstract away as much
implementation details from the user as possible.

• Usability: The portal should deliver services that are
useful, easy, and intuitive to use by different communities.

B. Architecture

In light of the above requirements, we constructed the EVOp
infrastructure using cloud computing technologies. These,
along with other associated technologies, offer a number
of advantages that translate to low operational costs at the
infrastructure level and high flexibility at the application level.

A pillar of cloud architectures is the concept of ‘every-
thing as a service’ (XaaS), which stemmed from service-
oriented programming, where all resources are identifiable via
a uniform view. This offers versatile resource management,
allowing EVOp to support data assets of different origins:
from in situ gauging stations, warehoused data stores, user
provided, and external sources. The management of such
resources is also transparent, i.e. details of where and how
the data are held are hidden from the user without affecting
their experience. Moreover, this design concept hides away
implementation details from other system elements which
facilitates easier sharing between scientists (e.g. workflows)
which in turn promotes a culture of collaboration. It also
allows for the data to be used in models and simulations
without necessarily giving it away to the users, thus avoiding
some of the delicate aspects of data ownership. This concept
is extended to include tangible resources in Infrastructure
as a Service (IaaS), where hardware arrangements could be
obtained as and when required. This provisioning of hardware
resources as a utility introduces elasticity, whereby the EVOp
infrastructure is allowed to scale to meet user demand and
maintain a minimum quality of service. This is made possible
by handing over some of the key distributed systems manage-
ment functions to a cloud provider. The return is assured levels
of reliability, performance, and security which lets us focus on
solving domain-specific problems. Furthermore, virtualisation
technologies are used to dynamically deliver environments that
are specifically customised to execute user workflows (e.g. GIS
models).

IV. IMPLEMENTATION

The section provides technical details of three main parts
of the implementation: a) the underlying infrastructure, b) the
adopted web service standards, and c) the web technologies



employed by the user front end. The section ends with an
overview of how the infrastructure looks and functions having
been developed using the above technologies.

A. Cloud Infrastructure

An early realisation in the lifetime of the project was
concerning the need to rise above the shortcomings of one
cloud provisioning solution and to have means by which
we can control upfront and running expenditures. We thus
adopted a hybrid infrastructure comprised of both private
and public cloud resources. The private cloud is hosted in
Lancaster University and is operated by us using OpenStack.
The public cloud resources are provided by Amazon Web
Services (AWS). The pairing of OpenStack and AWS is a
common one in the cloud computing world; AWS is arguably
the most mature and feature rich public IaaS provider [37],
and OpenStack is backed by many as the de facto open
source alternative to the core AWS products, i.e. EC2 (utility
computing) and S3 (storage service). This makes it possible,
at least in theory, to use the same virtual machine (VM)
images to start instances in either cloud. In an effort to
promote portability and to avoid being tied in to one provider,
we decided to use the cross-cloud library jclouds [38]. This
open source software provides abstractions across many of the
widely used cloud solutions.

B. Standard Web Services

The EVOp infrastructure is an ecosystem inhabited by
different elements, such as datasets and analysis processes.
Each of these inhabitants, according to the XaaS architectural
modus operandi, is considered a system resource that is made
accessible via a web service interface. This offers a great
deal in terms of abstraction, transparency and delegation, and
facilitates easy usage and management. One way to describe
the benefits is to think about internal and external access to
resources. Internal access, where management is involved, is
vastly improved as all system resources are accessible in a
uniform machine-readable manner. This not only simplifies
housekeeping tasks but also enables advanced management
tasks to improve availability, fault recovery, etc. Externally,
where access to resources does not involve management, is
similarly transformed by the ability to consume a resource at
a convenient level without worrying about more details than
necessary. Moreover, separation of concerns brought on by
abstraction is in itself a significant benefit.

In line with this XaaS architectural ethos, all EVOp web
services interfaces are of a uniform view, designed according
to the Representational State Transfer (REST) architectural
principles, except where current standards do not accom-
modate REST (examples will be given shortly). REST is
a resource-oriented architectural style, as opposed to the
transaction-oriented SOAP web services. The latter require
high communication and operation overheads in order to
maintain transaction state on the server, i.e. the machine
hosting a web service to process a request. This has a knock on
effect on performance, scalability, and fault tolerance of these

services. In contrast, RESTful web services remain completely
stateless with all data required to transition between different
states being included in the service request. This promotes
loosely coupled services. In other words, adopting RESTful
services draws a clear line between the client and the server.

Such loose coupling has a huge knock-on effect on infras-
tructure scalability and manageability. As application state is
not maintained by the server, there is much less load on it. The
client, however, can invoke the server as much as required to
change the state throughout the steps of a scientific experiment,
the different runs of a simulation, etc. Moreover, this greatly
simplifies complicated infrastructure management tasks such
as load balancing and failure recovery. In order to optimise
performance, end user requests are routed to any available
hosted service regardless of previous interactions. Similarly,
failed VMs are easily replaced. Hence, service migration is
graceful and requires no advance resource reservation, shared
block devices, or any similar techniques.

Consequently, we find the RESTful approach to architect
web services very suitable for different types of scientific
applications, especially embarrassingly parallel ones such as
Monte Carlo simulations, parameter sweeps, uncertainty anal-
ysis, etc. where there is no need to share state between
different transactions.

Nonetheless, adopting the RESTful style for web services
was not without difficulties. The main stumbling block was
that most of the standards in the geospatial analysis community
are specified using SOAP services. Conforming to these stan-
dards is of high priority to us for all model implementations.
The ones we adopt are Web Processing Service (WPS) and
Sensor Observation Service (SOS)2. This meant not having a
completely RESTful architecture in order to enable easy in-
tegration of models and composing more sophisticated OGC-
compliant web services. We find this a fair compromise for
the time being.

EVOp Portal

Load 
Balancer

Resource 
Broker

Infrastructure 
Manager

Policy Makers, Local 
Communities, General Public

Data Providers, Modellers, 
Domain Specialists

Active 
Sessions

Model 
Library

Workbench 
Repository

jclouds Compute
RESTful APIs

ssh

jclouds BlobStore
Interaction Types

HTML5 WebSockets

Private Cloud Public Cloud

!

!

Fig. 1. EVOp infrastructure components and data flows

2More information is available in [39] and [40].



C. Web 2.0 Technologies

Service delivery is a commonly misjudged portion of digital
science projects. Traditionally, the importance of data visuali-
sation has been underestimated which lead to services that are
inaccessible to many scientists, let alone users from outside
the domain. Sometimes, aspects such as user experience are
overemphasised whilst focusing less attention to the added
value the project is supposed to offer.

In EVOp, we believe in the importance of high quality data
visualisation, intuitive and familiar user interaction, and low
entry barrier user interfaces. Such features have significant
influence on user adoption, and can thus make or break the
user’s perception of the value of an offered service especially
over the web. Furthermore, portal users, including scientists,
are not expected to be IT experts and hence would rather
not tussle with compatibility issues, security restrictions, and
other hurdles that were detrimental to the uptake of previous
e-research efforts. We thus made it a priority to involve our
target users: involve them in the beginning and continuously.
Nonetheless, the feedback from the different stakeholders were
also used to ascertain a balance between ease of use and high
added value for all users.

In order to achieve such balance, we developed a set of
web-based tools that enable users to explore data sources,
run models in the cloud, visualise the output of model runs,
and assist in comprehending that output. Delivering the EVOp
services through a web-based portal is key for our purposes.
The services are universally accessible by all target groups
using a modern web browser. Users do not need to install
special software. The users could use any web-enabled device
from any location. This enables access using mobile devices,
which is particularly convenient for field-based and travelling
researchers.

The portal hosts a number of models that require different
inputs and produce different outputs. For interacting with each
model (i.e. manipulating the input and parameters) and to
help bring out relationships or patterns within the data, a
bespoke web interface was developed to suit the particular
factors in question. This is achieved using dynamic HTML,
native HTML5 page elements, HTML5 WebSockets mes-
sage exchange, and browser scripting using publicly available
Javascript libraries. These libraries, which include jQuery and
qTip2, were chosen on the basis of providing intuitive user
interaction and high customisability, such as the ability to
tie in with dynamically loaded content. Geospatial data are
visualised using interactive layers superimposed over maps.
The Google Maps API is used for this purpose due to its
wealth in mapping data, customisation features, and the famil-
iarity that many of the potential users have with it. Geospatial
layers are made interactive in order to include time series
graphs and other sorts of visualisations over specific map
locations. This was accomplished using the Flot Javascript
library. Flot was selected due to its programming flexibility,
intuitive interactivity, and support of automatic data updates
using AJAX.

D. Infrastructure Summary

We now summarise the infrastructure that culminated using
the above technologies. Figure 1 depicts the data flow between
the different infrastructure components which enable seamless
user interaction.

The Model Library (ML) is populated by domain specialists
(e.g. hydrologists) in liaison with data providers. For enduser-
facing services, the process starts with offline calibration and
testing of a model against a certain dataset (e.g. TOPMODEL
on the rainfall data of the Eden catchment in the north west
of England). The outcome of this process is a VM image
optimised to run a fine tuned set of models that are exposed
as web services and equipped with all required data. This
streamlined execution bundle is then stored in the ML to
be instantiated upon demand. An image could be updated to
include more historical data or to adjust the implementation of
a model in some way. The alternative path is to use a generic
image from the ML to serve as a model incubator. Using these
images, more experimental models are installed and exposed
as web services deployed according to the OGC WPS standard.
They can then be calibrated for different modelling scenarios
and using different datasets. This has some effect on execution
performance when compared to a streamlined execution unit,
but is a useful testing ground for modelling scientists.

Once a user navigates to one of the modelling widgets (an
example of these will be provided in the following section), a
connection is created with the Resource Broker (RB) module
of the Infrastructure Manager. RB responds with an address
of a cloud instance that is suitable for the type of computation
required, along with some session information. This commu-
nication is done in the background using HTML5 WebSockets
which facilitates event-based asynchronous duplex commu-
nication without the need for periodic polling or streaming,
which are costly and inefficient modes of background browser
traffic exchange. This reduces network overhead and browser
memory usage, and enables RB to manipulate the user session
more efficiently. For instance, this is used to update the set of
active sessions in order to balance load by sensing when user
sessions end. It also allows RB to push any session updates to
the user’s browser, such as in the case of migrating the user
to a new cloud instance.

The Load Balancer (LB) monitors the health status of run-
ning instances with two objectives: minimise costs and main-
tain instance responsiveness. To minimise cost, user requests
are served by default using private instances. Upon saturation
of private cloud resources, LB initiates cloudbursting mode
where public cloud instances are used beside private ones. This
is reversed upon detecting underuse, migrating users back to
use private instances. For the latter objective, i.e. maintaining
responsiveness, instance statistics are observed, namely CPU
utilisation, disk reads and writes, and network usage. Degra-
dation in these metrics, such as sustained high CPU utilisation
or zero outbound network usage whilst receiving inbound
traffic, triggers LB into starting a new instance and redirecting
users that were being served by the seemingly malfunctioning



instance to the newly created one. LB also monitors the state
of active user sessions and redistributes users on running cloud
instances accordingly. RB is used to push updated session
information in order to redirect user calls.

V. USE CASE DEVELOPMENT

Requirement collection for the EVOp portal was not a trivial
task. This is due to the novelty of the application and the
need to create highly customised web tools. Furthermore, the
EVOp team included researchers from different backgrounds
(environmental, computer and social science) [41]. Frequent
meetings were required to discern any changes that need to
be done at an early phase. In this section we describe the
methodology used to build added value on top of the EVOp
infrastructure, and we detail one of the use cases developed
within the project.

A. Methodology

Storyboards

Development

Verification

Consortium 
Validation

Stakeholder 
Validation

Deployment

Fig. 2. The Test-Driven Development Cycle.

The EVOp development process is an iterative and in-
teractive process that is heavily depended on incremental
development and frequent verification. We used the Agile-
based test-driven development methodology (see Figure 2).
A storyboard, i.e. a stepped illustration of a fully defined
user scenario, was outlined by partner domain specialists
(referred to as the storyboard owners). The detailed visual
steps provided by storyboards allowed us to collect not just
the core functional requirements but also well-defined usage
contexts, user interface layout and interaction, and full-length
experiential user flow. Based on these, prototypes were de-
veloped and iteratively improved and built upon following
processes of verification and validation. Verification is the
process of checking than an artefact developed (here, the
virtual observatory) is technically correct and addresses the
requirements laid out in the storyboard. This involves unit
tests to ensure good and failsafe execution of software com-
ponents, and integration tests to examine full features that
span several components. This technical verification is one of
the main communication practices between the development
team and the storyboard owners, occurring at the end of each
development cycle which usually takes between a day to a
week depending on the size of the task at hand. In contrast,
validation relates to confirming that an artefact developed does
indeed serve the intended end-users the way the storyboard

describes. The main objective here is not technical soundness
as much as it is utility (i.e. how useful it is) and usability
(i.e. how convenient and intuitive it is to use). This dialogue
goes in both directions between researchers and stakeholders
(Figure 3), and is centered around the issue addressed by the
proposed tool and its general context and implications. This
sort of participatory engagement is reported to be the most
successful [42]. Validation cycles are longer than verification
ones. They are carried out within the wider project consortium
(every 1-2 months or so) and with the stakeholders through
evaluation workshops (once or twice a year).

Fig. 3. Discussions at a public stakeholder meeting.

We now provide detail on one of the local storyboards.
Details of another storyboard that was developed are available
in [43].

B. Local Flooding Storyboard

The local scale EVOp exemplar, which henceforth will be
referred to as the Local EVOp Flooding Tool (LEFT), was
developed with stakeholders from three largely rural catch-
ments in England, Scotland and Wales. These catchments were
selected owing to a number of environmental issues, previous
track record of engagement through the research teams and
deployments of in situ environmental sensors. Workshops were
held in each catchment to come up with an example tool (using
the storyboard approach previously mentioned) that is owned
and defined by the local stakeholders.

Flooding was found to be an issue in all three catch-
ments; Morland in Cumbria (England), Tarland in Aberdeen-
shire (Scotland), and Machynlleth in Powys (Wales) all had
suffered from floods within the past five years. Workshop
groups mainly consisted of villagers, farmers and catchment
managers. Some workshops also included other stakeholders
such as the insurance industry. Villagers were interested in
further information to help them react to a flood, but also
had an interest in what caused the flooding. Farmers wanted
to understand if their farming practices increased the risk of
flooding, and options that could reduce that risk (working
with the catchment managers and associated environmental
stewardship scheme funding packages). There was a desire
from local catchment stakeholders to have live access to
rainfall and river level sensors in their catchments and to look
at future flooding scenarios.

A storyboard was accordingly drawn to show the process
a user would go through to use LEFT for gaining knowledge



from local datasets and then being able to use these datasets
to feed cloud-based models and visualisation systems.

The storyboard would start with key purposes that stake-
holders identified during the workshops, such as “how do I
decide when my property is at risk of flooding?”. It would
then start to be substantiated by identifying a user’s journey
through the tool: starting with selecting the feature they desire
and any associated data (based on location, for instance), the
display and layout of results, and any subsequent interactions
to further explore or interpret the outcomes. From this, a set
of basic requirements are captured that will be later used
to ensure successful tool delivery. The tool was developed
iteratively during the project to reflect the needs, interests and
capabilities of the different stakeholders.

Fig. 4. The home panel for LEFT. Users can select certain data types to view,
then click through for deeper exploration.

First, an interactive mapping backdrop was developed as the
LEFT landing page (Figure 4), on top of which datasets (both
static and live) and other assets (such as webcam feeds) were
overlaid on the map as geotagged markers. This provides users
with the ability to instantly identify assets of interest based on
geographical location. For most users, this entails exploring
their local catchment and gathering information from various
data sources. Google Maps API was used for this part of the
work (after considering alternatives like OpenLayers and Bing)
due to its wealth in data, features, and familiarity for target
users.

The interactive nature of the geospatial layers provides the
ability to reveal new interfaces to the user. Such interfaces
vary based on the type of asset. The stakeholder workshops
highlighted high interest in being able to visualise live data.
Based on this information, we developed visualisation widgets
that assist users with interpreting the data they were looking
at. For example, live data (such as those fed by in situ sensors)
were presented as time series graphs. In some instances, we
combined more than one data source to present bespoke,
multimodal visualisations and user interaction facilities. In one
instance, different sensors were used to plot water temperature

Fig. 5. An example of using data mashups for multimodal visualisation. The
widget in this screenshot uses synchronised data from in-stream water sensors
and stream-side webcams.

and turbidity linked with the corresponding webcam image
taken roughly at the same time (Figure 5).

Having developed this framework where assets are laid on
a map and widgets opened upon interaction, we dedicated a
lot of effort to develop the LEFT modelling widget.

The widget is an example of a bespoke user interface that
offers rich interaction functionality to leverage the computa-
tional power provided by the cloud. The widget was built by a
team of domain experts, hydrological modellers, web designers
and developers following the TDD methodology discussed
in section V-A. This widget, shown in Figure 6, contains a
number of different options for the user to choose from: the
datasets available at this location, the hydrologic model to use,
and the model’s parameters. In order to alleviate some of the
complexity of adjusting the model, the user could also select
from four land use and management change scenarios. These
scenarios, developed with stakeholders, were used to illustrate
how changes to land use and land management practices are
likely to impact flood risk at the catchment outlet. The widget
also shows detailed textual and animated help to provide
background information and educate the user about the model
and scenarios.

For this use case, two hydrological models were deployed
in the cloud to test the conceptual land use scenarios: TOP-
MODEL [44], an established quasi-physical processed based
model, and the multi-model ensemble FUSE [45]. Model
calibration was carried out offline to ensure that input data
and parameters were in the correct format and the model could
adequately reproduce observed discharge at the outlet of the
catchment. Once all selections are done by the user, the model
is run instantly on demand in the cloud and the returned results
are rendered as a hydrograph plotted using Flot (Figure 6).
Changes in the flood hydrograph could be examined by run-
ning the model under different predefined scenarios or specific
parameter combinations to allow comparison between model
runs and provide an understanding of the stream’s response at



Fig. 6. The LEFT modelling widget provides: location-specific data streams,
answers to exploratory scenarios using different pre-calibrated models, help
on comparison of different model outputs, more fine-tuned model calibration
for domain experts, and current policy guidance on flooding thresholds.

the catchment outlet to changes to land use and management.
The predefined scenarios can be selected using the buttons
in the top-right of Figure 6. These are especially designed
for policy makers and the general public. In contrast, users
who are more familiar with the models could explore model
parameter sensitivity through HTML sliders included in the
widget just below the scenario selection buttons. The sliders
default to the settings for each scenario to allow users to
compare how changes to these values alter the model outputs.
This is an example of a multi-faceted interface that enables
the widget to cater to the needs of different user groups.

The workshop attendees in particular identified the huge
benefits from using a ‘cloud’ platform, e.g. accessing data
that is not normally available to them, as well as using tools
that they do not usually have on their own desktops. This
allowed land owners to explore future land use scenarios,
allowing them to conceptually understand the associated flood
risk. There was universal agreement that the EVOp potentially
provides a tool that holds both educational and scientific
value. The last evaluation workshops saw enthusiasm from
stakeholders to develop new tools based on new storyboards
(e.g. what would be the impact of this scenario on catchment
water quality).

VI. CRITICAL REFLECTION

In this section, we reflect on the EVOp infrastructure and
development experience and discuss it in light of the require-
ments set forth in subsection III-A. These are: flexibility,
scalability, interoperability, transparency, and usability.

The service-oriented and cloud-based aspects of the EVOp
architecture lend much flexibility and transparency at dif-
ferent levels. To illustrate what the former affords, we break
down resources into soft and hard assets. For soft assets (such
as data sets and models), XaaS hides from the user details of
where resources are held and how they are managed. Such ab-
straction translates to a better user experience as complicated
issues are offloaded allowing the users to focus on solving
domain-specific problems. By the same token, XaaS also
enables delegation which allows models to process datasets
without necessarily giving them away, avoiding some of the
thorny issues of data ownership. Moreover, XaaS enables
versatile management, allowing EVOp to support data assets
of different origins: in situ gauging stations, warehoused data
stores, and external sources. It also promotes a mashup culture
where resources can be shared, reused, and combined to create
more sophisticated assets. Obviously, this involves dealing
with resources of varied types and sources and making them
addressable and manageable via APIs. For hard or tangible
assets (where XaaS is essentially IaaS), hardware resources
could be arranged as and when required. This provisioning of
hardware resources as a utility abstracts away the complexities
of distribution, reliability and availability. It also offers scala-
bility through elasticity, whereby the infrastructure is allowed
to scale to meet user demand and maintain an acceptable
quality of service. Consider for instance uncertainty analysis
where a model is repeatedly executed using ranges of values
for input parameters in order to compensate for any sources
of error in how well the data represents the real variables,
e.g. topographical representation of a river catchment. This
requires substantially more computational resources than a
single execution. By providing such resources on demand, IaaS
presents such a great advantage when compared to both grid
and cluster computing where usage quotas are a common hin-
drance for resource-intensive computations. Another example
is flash crowds, i.e. extremely large and unexpected number
of portal users. IaaS enables us to manage such events with
great ease and maintenance of high Quality of Service (QoS).
Several additional techniques could be used here to ensure
high QoS, such as prefetching data records and preemptively
bootstrapping cloud instances as soon as a user visits the
portal. This results in additional operational overheads, but
is usually not significant enough in comparison to the gain in
user experience.

In another regard, IaaS provides flexibility through virtual-
isation. This technology allows VMs to be furnished accord-
ing to specific requirements. For EVOp, the team developed
four different models each of which was used different pro-
gramming languages and software requirements. For instance,
TOPMODEL was developed as a library (package) for the
R data analysis platform then deployed as an WPS endpoint
using the Python-based implementation PyWPS [46], [47] and
the R Python connector RPy2 [48]; another model (export
coefficient model) was implemented as a combination of PHP
on an Apache server and JavaScript on the client side. This
ability to produce any software environment with practically



no restrictions is a great enabler especially when consider-
ing the cross-disciplinary aspirations of a virtual observatory
where different developers from diverse backgrounds and
working conventions are to be expected. One thing to plan for
is the choice of the technologies to prepare and deploy VMs.
For virtual appliances that are managed as full (pre-baked)
machines images, the choice of image format is crucial to
ensure the ability to operate across different IaaS infrastruc-
tures. Additional technologies could also help in this regard,
most worthy of note are Configuration Management Tools
(CMTs) such as Chef and Puppet which allow the definition
of an infrastructure of VMs as code. This is quite useful for
lightweight and automated deployment configuration.

Using the jclouds cross-cloud API was vital to maintain
infrastructural interoperability [49], [50]. This proved quite
useful when the infrastructure provider or its utilisation model
needs to be adjusted. For example, changing the scheduling
policy from ‘all computations on private cloud until saturation’
to something more selective such as ‘streamlined models
to AWS and experimental ones to the private cloud’. More
importantly, though, it is necessary to have a federated open
approach as it is impossible to commit the national and
international ES community to any one commercial provider.
As for semantic interoperability, we were attentive to the need
of complying to the open standards already established in
the geospatial modelling community. Adhering to the OGC
standards (namely Web Processing Service) to specify ex-
actly how web service inputs and outputs should be required
additional effort from the domain specialists implementing
the web services. However, adhering to this ensured future
compatibility; i.e. the ability to easily plug different modelling
services without the need to neither re-align the input data nor
tweak the tools used for visualising the output.

Usability is one of key concerns, and hence we were
constantly driven by maintaining optimal service delivery and
low entry barriers. As described in Section V, we dedicated
significant effort to continuously engage with different stake-
holder groups and use their feedback to guide the following
iterations of the work [51]. The feedback from the stakeholder
workshops were supportive of our approach: more than 75%
of users found the tool to be both useful and easy to use
with a good look and feel [52]. One aspect brought up by the
stakeholders during the workshops is the lack of presentation
of uncertainty bounds. The tool output as they are provide
a conceptual understanding of the different scenarios, but
uncertainty could easily be explored beyond the project using
the same technical setup described in Section IV and using
the ‘percentile’ feature in Flot. Embracing a test-driven design
through the use of storyboards defined from the perspective
of potential users was instrumental. It allowed us to launch
the development cycle with clearly defined targets based on
the expectations and capabilities of the target user groups.
This along with an Agile approach helped us avoid drawn-out
development cycles that are not checked on a regular basis.
This is a common trap that usually results in a product that
is not useful for the target users (i.e. does not help answering

their questions) no matter how easy to use it may be. We found
this combination to be extremely effective for dealing with the
mix of divergent storyboards and diverse domain experts. An
important lesson we would like to share here, referring back to
Figure 2, is to keep the verification loop rather short and rapid
in comparison to the validation (internal feedback) loop. One
way of achieving this is to always involve storyboard owners
in the prototyping process even before verification milestones
are due [53].

VII. LESSONS LEARNED

Through building the EVOp portal as a virtual research
environment [54], we were able to successfully lower the
barrier for various user groups by providing universal access to
models and data, means of executing models and manipulating
data, and interpreting and sharing results. Outside of the
technical lessons already discussed, a number of lessons were
learned through the EVOp project, which we believe would
be valuable to the wider distributed computing community.

Only use what is needed

By now, there is a rich tradition of developing cloud
applications and complex distributed systems [55], specifically
those handling predictive modelling and similar workloads.
However, not all available tools and approaches are suitable,
and forcing the latest SE trend would not necessarily ob-
tain positive results. An example from EVOp is the use of
collaborative research tools e.g. Jupyter [56]. Such tools are
extremely powerful, but they do not necessarily create a pro-
ductive environment for scientists from different backgrounds
and subfields (see the following lesson). Moreover, they are
not readily accessible to non-experts, lamenting the barrier
between different user groups. Our experience shows success
using a simple architecture based on long-tested methods, such
as an XaaS strategy and employment of Web 2.0 tools, and
instead focussing our collective creative energy on developing
participatory design processes (see Section V-A).

Disciplinary boundaries persist

Building software systems does not solve all issues. A
major challenge we faced in EVOp is crossing disciplinary
boundaries, which predominantly persist in ES and are man-
ifested in a number of different ways such as terminology,
data collection and processing methods, data formats, and of
course scientific goals. We found that storyboarding helps a
lot in reaching some form of consensus on high-level goals
and methods. However, what helped further were: frequent
verification meetings, and creating enough flexibility in the
system to support different working methods.

Efficient communication

Although the TDD cycle was a foreign concept to most
stakeholders from non-SE backgrounds, it was readily adopted
by all – expert software engineers and non-programming stake-
holders alike – once explained, confirming similar findings in
the literature (cf. [57]). One of the benefits of following the



cycle across the whole project is making sure that software
engineers do not dominate the process, and that different
stakeholders are being made aware of progress in other areas
through a familiar process that is predominantly social [58].

Create means to both educate and learn from stakeholders
People are extremely interested in ES; from local and central

government officials and agencies, water and energy sectors,
insurance industry, to the wider public. Many of these various
groups seek simple answers to complex questions. Stakeholder
awareness has already been highlighted in the literature [59],
[58], but from our experience this is not sufficient to ensure
active engagement. A certain degree of education is required
beyond mere awareness (Figure 7). Our development cycles
were much more productive after the first two stakeholder
meetings where the intricacies of the used prediction models
and data were explained and discussed in detail. This lead to
a better understanding on all sides and ultimately to widening
the circle of engagement around the different ES themes ad-
dressed in EVOp. This is of crucial importance as empowering
individuals is a proven path towards positive action [60], [61].

Awareness Education

Engagement

Empowerment

Fig. 7. Awareness is not enough to ensure engagement.

VIII. CONCLUSIONS & FUTURE WORK

In face of increasingly difficult environmental challenges,
the scientific community is looking for collaborative infor-
mation infrastructures that facilitate collecting and processing
data, chaining and executing models, and visual interpretation
of results for different audiences. Cloud computing along with
a number of associated technologies offer great potential in
realising such infrastructures. This article presented the EVOp
project and its portal, which provides access to data and tools
that help different stakeholders in engaging with pressing env-
ironmental issues. We specifically focused on the architectural
design, Agile test-driven development process, and enabling
technologies that underpin the virtual observatory. These are
of relevance to others working on similar integrated tools both
within the wider scope of ES and beyond.

EVOp’s underlying infrastructure is a tailored hybrid one
of owned and leased cloud resources. This infrastructure not
only does the computational heavy-lifting, but also offers the
flexibility to integrate and support varied resources including
cloud-hosted data sets and legacy web services. The system
also has a low entry barrier compared to previous systems:
modellers are able to create execution units using a devel-
opment environment of their choice, and users are able to

execute them from a simple web app with no expectation of
user device. The EVOp architecture was fashioned to focus
on assets rather than on transactions, thus enabling efficient
resource management and easy fault mitigation.

More importantly, we shared lessons learned to help oth-
ers who are also working to use cloud tools for widening
stakeholder engagement around public debates such as that
surrounding ES. Making initial progress was definitely not
easy, as each stakeholder was pulling in a different direction.
This is not least due to the confusion created by a divergent
atmosphere where people working on the same problem could
be doing so in isolation without necessarily sharing data or
knowledge. Having a well-detailed and well-managed test-
driven development cycles, with a specific focus on commu-
nication and education, helped in pulling efforts together.

EVOp served as a demonstrator built to meet diverse and
variable resource requirements. There already are a number of
efforts building on the wealth of experience garnered. First,
various efforts are under way to invest in infrastructures for
supporting different uses in ES. Second, we are planning to
expand the spectrum of tools by supporting domain specialists
to expose more models as web services. More importantly, we
are looking to increase the room for customisation by support-
ing workflow composition. So far, we have been building web
based prototypes based on very specific use cases outlined by
storyboards. A workflow is a conglomerate scientific process
composed of a directed acyclic graph of basic execution units
(e.g. executables, scripts, web services, etc.). Workflows allow
‘advanced’ users (i.e. domain specialists from the scientific
or governmental communities) to create complex experiments
that can be easily tweaked and replayed, offering reproducibil-
ity and traceability.

ACKNOWLEDGMENT

This work was supported by NERC UK under grant refer-
ence NE/I002200/1, ‘Pilot Virtual Observatory’. Thanks go to
the rest of the project team: Lucy Ball (Centre for Ecology
& Hydrology – CEH), Keith J. Beven (Lancaster University),
John Bloomfield (BGS), Paul Brewer (University of Aberys-
twyth), Wouter Buytaert (Imperial College London), Lucy
Cullen (CEH), Julie Delve (CEH), Bridget Emmett (CEH),
Jim Freer (Bristol University), Sheila Greene (CEH), Philip
M. Haygarth (Lancaster University), Penny Johnes (Bristol
University), Jane Lewis (University of Reading), Christopher
J. A. Macleod (James Hutton Institute), Mark G. Maklin
(Aberystwyth University), Keith Marshall (James Hutton In-
stitute), Adrian McDonald (Leeds University), Nick Odoni
(Bristol University), Paul F. Quinn (Newcastle University),
Sim M. Reaney (Durham University), Gwyn Rees (CEH),
Marc Stutter (James Hutton Institute), Doerthe Tetzlaff (Ab-
erdeen University), Nicola Thomas (Aberystwyth University),
John W. Watkins (CEH), and Bronwen Williams (CEH). The
work was also partially supported by EPSRC UK under grant
reference EP/N027736/1, ‘Models in the Cloud: Generative
Software Frameworks to Support the Execution of Environ-
mental Models in the Cloud’.



REFERENCES

[1] A. J. G. Hey and A. E. Trefethen, “The data deluge: An e-science
perspective,” in Grid Computing - Making the Global Infrastructure a
Reality, F. Berman, G. C. Fox, and A. J. G. Hey, Eds. Wiley and Sons,
2003, pp. 809–824, Chapter 36.

[2] R. G. Baraniuk, “More is less: Signal processing and the data deluge,”
Science, vol. 331, no. 6018, pp. 717–719, 2011.

[3] W. Buytaert, S. Baez, M. Bustamante, and A. Dewulf, “Web-based
environmental simulation: Bridging the gap between scientific modeling
and decision-making,” Environmental Science & Technology, vol. 46,
no. 4, pp. 1971–1976, 2012.

[4] E. P. White, E. Baldridge, Z. T. Brym, K. J. Locey, D. J. McGlinn, and
S. R. Supp, “Nine simple ways to make it easier to (re) use your data,”
Ideas in Ecology and Evolution, vol. 6, no. 2, 2013.

[5] B. Nelson, “Data sharing: Empty archives,” Nature, vol. 461, pp. 160–
163, Sep 2009.

[6] C. Tenopir, S. Allard, K. Douglass, A. U. Aydinoglu, L. Wu, E. Read,
M. Manoff, and M. Frame, “Data sharing by scientists: Practices and
perceptions,” PLoS ONE, vol. 6, no. 6, p. e21101, 06 2011.

[7] C. J. Volk, Y. Lucero, and K. Barnas, “Why is data sharing in collabo-
rative natural resource efforts so hard and what can we do to improve
it?” Environmental Management, vol. 53, no. 5, pp. 883–893, 2014.

[8] T. Karpouzoglou, Z. Zulkafli, S. Grainger, A. Dewulf, W. Buytaert, and
D. M. Hannah, “Environmental virtual observatories (evos): prospects
for knowledge co-creation and resilience in the information age,” Cur-
rent Opinion in Environmental Sustainability, vol. 18, pp. 40–48, 2016,
sustainability governance and transformation.

[9] P. Beaumont, P. A. Longley, and D. J. Maguire, “Geographic informa-
tion portals – a UK perspective,” Computers, Environment and Urban
Systems, vol. 29, no. 1, pp. 49–69, 2005.

[10] R. R. Hernandez, M. S. Mayernik, M. L. Murphy-Mariscal, and M. F.
Allen, “Advanced technologies and data management practices in env-
ironmental science: Lessons from academia,” BioScience, vol. 62, no. 12,
pp. 1067–1076, 2012.

[11] S. E. Hampton, C. A. Strasser, J. J. Tewksbury, W. K. Gram, A. E.
Budden, A. L. Batcheller, C. S. Duke, and J. H. Porter, “Big data and the
future of ecology,” Frontiers in Ecology and the Environment, vol. 11,
no. 3, pp. 156–162, 2013.

[12] B. Pernici, M. Aiello, J. vom Brocke, B. Donnellan, E. Gelenbe, and
M. Kretsis, “What IS can do for environmental sustainability: A report
from CAiSE’11 panel on green and sustainable IS,” CAIS, vol. 30, 2012.

[13] R. Verdecchia, F. Ricchiuti, A. Hankel, P. Lago, and G. Procaccianti,
“Green ICT research and challenges,” in Advances and New Trends in
Environmental Informatics. Springer, 2017, pp. 37–48.

[14] V. Thomas, C. Remy, M. Hazas, and O. Bates, “HCI and environmental
public policy: Opportunities for engagement,” in CHI. ACM, 2017, pp.
6986–6992.

[15] W. A. Simm, F. Samreen, R. Bassett, M. A. Ferrario, G. Blair, J. Whittle,
and P. J. Young, “SE in ES: Opportunities for software engineering
and cloud computing in environmental science,” in ICSE Software
Engineering in Society Track. ACM, 2018, pp. 61–70.

[16] Q. Gu, P. Lago, and S. Potenza, “Aligning economic impact with
environmental benefits: A green strategy model,” in Workshop on Green
and Sustainable Software. IEEE Press, 2012, pp. 62–68.

[17] M. Wilkinson, K. Beven, P. Brewer, Y. Elkhatib, A. Gemmell, P. Hay-
garth, E. Mackay, M. Macklin, K. Marshall, P. Quinn et al., “The
Environmental Virtual Observatory (EVO) local exemplar: A cloud
based local landscape learning visualisation tool for communicating
flood risk to catchment stakeholders,” in The European Geosciences
Union General Assembly Conference, vol. 15, 2013, p. 11592.

[18] E. Osuteye, C. Johnson, and D. Brown, “The data gap: An analysis
of data availability on disaster losses in sub-Saharan African cities,”
International Journal of Disaster Risk Reduction, vol. 26, pp. 24–33,
2017.

[19] A. I. J. M. van Dijk, H. E. Beck, R. S. Crosbie, R. A. M. de Jeu,
Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney, “The millennium
drought in southeast Australia (2001–2009): Natural and human causes
and implications for water resources, ecosystems, economy, and society,”
Water Resources Research, vol. 49, no. 2, pp. 1040–1057, 2013.

[20] C. Tortajada, M. J. Kastner, J. Buurman, and A. K. Biswas, “The Califor-
nia drought: Coping responses and resilience building,” Environmental
Science & Policy, vol. 78, no. Supplement C, pp. 97–113, 2017.

[21] G. S. Blair and Y. Elkhatib, “A Cloud-based Virtual Observatory for
Environmental Science,” OpenWater Symposium, p. 102, Apr 2011.

[22] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, and
F. Paulisch, “Exploring initial challenges for green software engineering:
Summary of the first greens workshop,” SIGSOFT Software Engineering
Notes, vol. 38, no. 1, pp. 31–33, Jan 2013.

[23] R. Chitchyan, I. Groher, and J. Noppen, “Uncovering sustainability
concerns in software product lines,” Journal of Software: Evolution and
Process, vol. 29, no. 2, 2017.

[24] G. A. Garcı́a-Mireles, M. A. Moraga, F. Garcı́a, C. Calero, and
M. Piattini, “Interactions between environmental sustainability goals and
software product quality: a mapping study,” Information and Software
Technology, 2017.

[25] M. M. Gallardo, P. Merino, L. Panizo, and A. Linares, “A practical use
of model checking for synthesis: generating a dam controller for flood
management,” Software: Practice & Experience, vol. 41, no. 11, pp.
1329–1347, 2011.

[26] G. Whelan, K. Kim, M. A. Pelton, K. J. Castleton, G. F. Laniak,
K. Wolfe, R. Parmar, J. Babendreier, and M. Galvin, “Design of a
component-based integrated environmental modeling framework,” Env-
ironmental Modelling & Software, vol. 55, pp. 1–24, 2014.

[27] D. Wang, Y. Xu, P. Thornton, A. King, C. Steed, L. Gu, and J. Schuchart,
“A functional test platform for the community land model,” Environ-
mental Modelling & Software, vol. 55, pp. 25–31, 2014.

[28] S. Dauwe, T. Van Renterghem, D. Botteldooren, and B. Dhoedt,
“Multiagent-based data fusion in environmental monitoring networks,”
International Journal of Distributed Sensor Networks, vol. 2012, 2012.

[29] L. N. Leonard, C. Duffy, and G. Bhatt, “Data-intensive Hydrologic
Modeling: A Cloud strategy for integrating PIHM, GIS, and Web-
Services,” in The American Geophysical Union Fall Meeting, 2010.

[30] M. A. Bhat, R. M. Shah, and B. Ahmad, “Cloud computing: A
solution to geographical information systems,” International Journal on
Computer Science & Engineering, vol. 3, no. 2, 2011.

[31] A. Sun, “Enabling collaborative decision-making in watershed man-
agement using cloud-computing services,” Environmental Modelling &
Software, vol. 41, pp. 93–97, 2013.

[32] D. Wu, L. Zhu, X. Xu, S. Sakr, D. Sun, and Q. Lu, “Building pipelines
for heterogeneous execution environments for big data processing,”
IEEE Software, vol. 33, no. 2, pp. 60–67, Mar 2016.

[33] I. Demir and W. F. Krajewski, “Towards an integrated flood information
system: Centralized data access, analysis, and visualization,” Environ-
mental Modelling & Software, vol. 50, pp. 77–84, 2013.

[34] J. Leskens, M. Brugnach, A. Hoekstra, and W. Schuurmans, “Why
are decisions in flood disaster management so poorly supported by
information from flood models?” Environmental Modelling & Software,
vol. 53, pp. 53–61, 2014.

[35] K. Keahey and M. Parashar, “Enabling on-demand science via cloud
computing,” Cloud Computing, vol. 1, no. 1, pp. 21–27, May 2014.

[36] V. M. Quiroga, I. Popescu, D. P. Solomatine, and L. Bociort, “Cloud and
cluster computing in uncertainty analysis of integrated flood models,”
Journal of Hydroinformatics, vol. 15, no. 1, pp. 55–70, 2013.

[37] L. Leong, D. Toombs, B. Gill, G. Petri, and T. Haynes, “Magic
Quadrant for Cloud Infrastructure as a Service,” http://www.gartner.com/
technology/reprints.do?id=1-1IMDMZ5&ct=130819, Gartner, Inc, Tech.
Rep. G00251789, Aug 2013.

[38] Apache, “jclouds multi-cloud library,” https://jclouds.apache.org/.
[39] C. Vitolo, W. Buytaert, Y. Elkhatib, A. L. Gemmell, S. M. Reaney,

and K. Beven, “Cloud-enabled Web Applications for Environmental
Modelling,” in The American Geophysical Union Fall Meeting, Dec
2012.

[40] C. Vitolo, Y. Elkhatib, D. Reusser, C. J. Macleod, and W. Buytaert, “Web
technologies for environmental big data,” Environmental Modelling &
Software, vol. 63, no. 0, pp. 185–198, Jan 2015.

[41] B. Emmett, G. Rees, L. Ball, S. Greene, E. Mackay, C. Huntingford,
D. Field, M. Bicak, R. J. Gurney, A. Mcdonald, K. Beven, G. S. Blair,
J. P. Bloomfield, W. Buytaert, J. Delve, Y. Elkhatib, J. Freer, A. L.
Gemmell, P. M. Haygarth, P. J. Johnes, M. Macklin, C. J. A. Macleod,
N. Odoni, B. Percy, P. Quinn, S. M. Reaney, M. Stutter, B. Surajbali,
D. Tetzlaff, N. Thomas, C. Vitolo, M. E. Wilkinson, and B. Williams,
“Environmental Virtual Observatory Pilot Project,” Center for Ecology
& Hydrology, Tech. Rep., Mar 2014.

[42] A. Voinov and F. Bousquet, “Modelling with stakeholders,” Environ-
mental Modelling & Software, vol. 25, no. 11, pp. 1268–1281, 2010,
thematic Issue - Modelling with Stakeholders.

http://www.gartner.com/technology/reprints.do?id=1-1IMDMZ5&ct=130819
http://www.gartner.com/technology/reprints.do?id=1-1IMDMZ5&ct=130819
https://jclouds.apache.org/


[43] S. Greene, P. J. Johnes, J. P. Bloomfield, S. M. Reaney, R. S. Lawley,
Y. Elkhatib, J. Freer, N. Odoni, C. J. A. Macleod, and B. J. Percy, “A
geospatial framework to support integrated biogeochemical modelling
in the united kingdom,” Environmental Modelling & Software, vol. 68,
no. 0, pp. 219–232, Jun 2015.

[44] K. Beven, R. Lamb, P. Quinn, R. Romanowicz, J. Freer, V. Singh et al.,
“Topmodel,” Computer Models of Watershed Hydrology, pp. 627–668,
1995.

[45] M. P. Clark, A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt,
H. V. Gupta, T. Wagener, and L. E. Hay, “Framework for understanding
structural errors (fuse): A modular framework to diagnose differences
between hydrological models,” Water Resources Research, vol. 44,
no. 12, 2008.

[46] J. Cepicky, “PyWPS 2.0.0: The presence and the future,” Geoinformatics
FCE CTU, 2007.

[47] J. Cepicky and L. Becchi, “Geospatial processing via internet on remote
servers-PyWPS,” OSGeo Journal, vol. 1, no. 5, pp. 11–17, 2007.

[48] rpy2, “R in python,” https://rpy2.bitbucket.io/, 2016.
[49] Y. Elkhatib, “Mapping Cross-Cloud Systems: Challenges and Opportu-

nities,” in Conference on Hot Topics in Cloud Computing. USENIX
Association, Jun 2016, pp. 77–83.

[50] A. Elhabbash, F. Samreen, J. Hadley, and Y. Elkhatib, “Cloud brokerage:
A systematic survey,” ACM Computing Surveys, vol. 51, no. 6, pp.
119:1–119:28, Jan 2019.

[51] A. Jakeman, R. Letcher, and J. Norton, “Ten iterative steps in de-
velopment and evaluation of environmental models,” Environmental
Modelling & Software, vol. 21, no. 5, pp. 602–614, 2006.

[52] M. E. Wilkinson, E. B. Mackay, P. F. Quinn, M. Stutter, K. J. Beven,
C. J. MacLeod, M. G. Macklin, Y. Elkhatib, B. Percy, C. Vitolo, and
P. M. Haygarth, “A cloud based tool for knowledge exchange on local
scale flood risk,” Journal of Environmental Management, vol. 161, pp.
38–50, 2015.

[53] M. E. Kragt, B. J. Robson, and C. J. Macleod, “Modellers’ roles in
structuring integrative research projects,” Environmental Modelling &
Software, vol. 39, pp. 322–330, 2013, thematic Issue on the Future of
Integrated Modeling Science and Technology.

[54] M. Barker, S. D. Olabarriaga, N. Wilkins-Diehr, S. Gesing, D. S. Katz,
S. Shahand, S. Henwood, T. Glatard, K. Jeffery, B. Corrie, A. Treloar,
H. Glaves, L. Wyborn, N. P. C. Hong, and A. Costa, “The global
impact of science gateways, virtual research environments and virtual
laboratories,” Future Generation Computer Systems, vol. 95, pp. 240 –
248, 2019.

[55] G. S. Blair, “Complex distributed systems: The need for fresh perspec-
tives,” in ICDCS, July 2018, pp. 1410–1421.

[56] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P. Ivanov, J. Fred-
eric, and M. Bussonnier, “The Jupyter/IPython architecture: a unified
view of computational research, from interactive exploration to com-
munication and publication.” The American Geophysical Union Fall
Meeting, Dec 2014.

[57] D. S. Janzen and H. Saiedian, “A leveled examination of test-driven
development acceptance,” in ICSE, May 2007, pp. 719–722.

[58] D. Renzel, I. Koren, R. Klamma, and M. Jarke, “Preparing research
projects for sustainable software engineering in society,” in ICSE Soft-
ware Engineering in Society Track, May 2017, pp. 23–32.

[59] E. Jagroep, J. Broekman, J. M. E. M. van der Werf, P. Lago,
S. Brinkkemper, L. Blom, and R. van Vliet, “Awakening awareness
on energy consumption in software engineering,” in ICSE Software
Engineering in Society Track, May 2017, pp. 76–85.

[60] P. Lago and T. Jansen, “Creating environmental awareness in service
oriented software engineering,” in ICSOC. Springer, 2010, pp. 181–
186.

[61] S. C. El Idrissi and J. Corbett, “Green is research: A modernity per-
spective,” Communications of the Association for Information Systems,
vol. 38, no. 1, p. 30, 2016.

https://rpy2.bitbucket.io/

	Introduction
	Related Work
	Design
	Requirements
	Architecture

	Implementation
	Cloud Infrastructure
	Standard Web Services
	Web 2.0 Technologies
	Infrastructure Summary

	Use Case Development
	Methodology
	Local Flooding Storyboard

	Critical Reflection
	Lessons Learned
	Conclusions & Future Work
	References

