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ABSTRACT While machine learning and artificial intelligence have long been applied in networking
research, the bulk of such works has focused on supervised learning. Recently, there has been a rising
trend of employing unsupervised machine learning using unstructured raw network data to improve
network performance and provide services such as traffic engineering, anomaly detection, Internet traffic
classification, and quality of service optimization. The growing interest in applying unsupervised learning
techniques in networking stems from their great success in other fields, such as computer vision, natural
language processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving
cars). In addition, unsupervised learning can unconstrain us from the need for labeled data and manual
handcrafted feature engineering, thereby facilitating flexible, general, and automated methods of machine
learning. The focus of this survey paper is to provide an overview of applications of unsupervised learning
in the domain of networking. We provide a comprehensive survey highlighting recent advancements in
unsupervised learning techniques and describe their applications in various learning tasks, in the context of
networking. We also provide a discussion on future directions and open research issues, while identifying
potential pitfalls. While a few survey papers focusing on applications of machine learning in networking
have previously been published, a survey of similar scope and breadth is missing in the literature. Through
this timely review, we aim to advance the current state of knowledge, by carefully synthesizing insights
from previous survey papers, while providing contemporary coverage of recent advances and innovations.

INDEX TERMS Machine Learning, Deep Learning, Unsupervised Learning, Computer Networks

I. INTRODUCTION

Networks—such as the Internet and mobile telecom
networks—serve the function of the central hub of modern
human societies, which the various threads of modern life
weave around. With networks becoming increasingly dy-
namic, heterogeneous, and complex, the management of such
networks has become less amenable to manual administra-
tion, and it can benefit from leveraging support from methods
for optimization and automated decision-making from the
fields of artificial intelligence (AI) and machine learning
(ML). Such AI and ML techniques have already transformed
multiple fields—e.g., computer vision, natural language pro-
cessing (NLP), speech recognition, and optimal control (e.g.,
for developing autonomous self-driving vehicles)—with the

success of these techniques mainly attributed to firstly, signif-
icant advances in unsupervised ML techniques such as deep
learning, secondly, the ready availability of large amounts of
unstructured raw data amenable to processing by unsuper-
vised learning algorithms, and finally, advances in computing
technologies through advances such as cloud computing,
graphics processing unit (GPU) technology and other hard-
ware enhancements. It is anticipated that AI and ML will also
make a similar impact on the networking ecosystem and will
help realize a future vision of cognitive networks [1] [2], in
which networks will self-organize and will autonomously im-
plement intelligent network-wide behavior to solve problems
such as routing, scheduling, resource allocation, and anomaly
detection. The initial attempts towards creating cognitive or
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FIGURE 1. Outline of the paper

intelligent networks have relied mostly on supervised ML
methods, which are efficient and powerful but are limited
in scope by their need for labeled data. With network data
becoming increasingly voluminous (with a disproportionate
rise in unstructured unlabeled data), there is a groundswell
of interest in leveraging unsupervised ML methods to utilize
unlabeled data, in addition to labeled data where available,
to optimize network performance [3]. The rising interest
in applying unsupervised ML in networking applications
also stems from the need to liberate ML applications from
restrictive demands of supervised ML. Another reason of em-
ploying unsupervised ML in networking is the expensiveness
of curating labeled network data at scale, since labeled data
may be unavailable and manual annotation is prohibitively
inconvenient, in addition, to be outdated quickly (due to the
highly dynamic nature of computer networks) [4].

We are already witnessing the failure of human network
administrators to manage and monitor all bits and pieces
of network [5], and the problem will only exacerbate with
further growth in the size of networks with paradigms such
as becoming the Internet of things (IoT). An ML-based
network management system (NMS) is desirable in such
large networks so that faults/bottlenecks/anomalies may be
predicted in advance with reasonable accuracy. In this re-
gard, networks already have ample amount of untapped data,
which can provide us with decision-making insights making
networks more efficient and self-adapting. With unsupervised
ML, the pipe dream is that every algorithm for adjusting

network parameters (be it, TCP congestion window or rerout-
ing network traffic during peak time) will optimize itself
in a self-organizing fashion according to the environment
and application, user, and network Quality of Service (QoS)
requirements and constraints [6]. Unsupervised ML methods,
in concert with existing supervised ML methods, can provide
a more efficient method that lets a network manage, monitor,
and optimize itself while keeping the human administrators
in the loop with the provisioning of timely actionable infor-
mation.

Next generation networks are expected to be self-driven,
which means they have the ability to self configure, op-
timize, and heal [7]. All these self-driven properties can
be achieved by building artificial intelligence in the system
using ML techniques. Self-driven networks are supposed to
utilize the network data to perform networking chores and
most of the network data is imbalanced and unlabeled. In
order to develop a reliable data-driven network, data quality
must be taken care before subjecting it to an appropriate
unsupervised ML [8]. Unsupervised ML techniques facilitate
the analysis of raw datasets, thereby helping in generating
analytic insights from unlabeled data. Recent advances in
hierarchical learning, clustering algorithms, factor analysis,
latent models, and outlier detection, have helped significantly
advance the state of the art in unsupervised ML techniques.
In particular, recent unsupervised ML advances—such as
the development of “deep learning” techniques [22]—have
however significantly advanced the ML state of the art by fa-
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TABLE 1. Comparison of our paper with existing survey and review papers. (Legend:
√

means covered; × means not covered; ≈ means partially covered.)

Survey paper Published In Year # Refer-
ences

Areas Focused Unsupervised
ML

Deep
Learn-
ing

Pitfalls Future
Chal-
lenges

[9] Elsevier
Computer
Networks

2007 100 ML for Network Intrusion De-
tection

≈ × ×
√

[10] IEEE COMST 2008 68 ML for Internet Traffic Classi-
fication

≈ × × ×

[11] IEEE COMST 2013 177 ML for Cognitive Radios ≈ × × ×
[12] IEEE COMST 2014 152 ML for WSNs ≈ × ×

√

[13] IEEE COMST 2016 113 ML for Cyber Security Intru-
sion Detection

≈ × ×
√

[14] IEEE COMST 2017 269 ML in SONs ≈ × ×
√

[15] Springer
Book Chapter

2017 16 ML for Anomaly Detection in
Industrial Networks

≈ × ×
√

[16] IEEE COMST 2017 260 ML for Network Traffic Con-
trol

≈
√

×
√

[17] ArXiv 2017 154 ML for Network Intrusion De-
tection

≈
√

× ×

[18] Arxiv 2018 282 ML applications in the internet
of things

≈ ≈
√ √

[19] Elsevier 2018 148 ML applications in the internet
of things

≈ ≈ × ≈

[20] Springer 2018 501 ML in networking
√

≈ ×
√

[21] Springer 2018 79 ML applications in the internet
of things

≈ × × ≈

This Paper - 2019 321 Unsupervised ML in Network-
ing

√ √ √ √

cilitating the processing of raw data without requiring careful
engineering and domain expertise for feature crafting. Deep
learning is a class of machine learning, where hierarchical
architectures are used for unsupervised feature learning and
these learned features are then used for classification and
other related tasks [23]. The versatility of deep learning and
distributed ML can be seen in the diversity of their applica-
tions that range from self-driving cars to the reconstruction of
brain circuits [22]. Unsupervised learning is also often used
in conjunction with supervised learning in semi-supervised
learning setting to preprocess the data before analysis and
thereby help in crafting a good feature representation and in
finding patterns and structures in unlabeled data.

The rapid advances in deep neural networks, the democra-
tization of enormous computing capabilities through cloud
computing and distributed computing, and the ability to
store and process large swathes of data have motivated a
surging interest in applying unsupervised ML techniques in
the networking field. The field of networking also appears
to be well suited to, and amenable to applications of un-
supervised ML techniques, due to the largely distributed
decision-making nature of its protocols, the availability of
large amounts of network data, and the urgent need for
intelligent/cognitive networking. Consider the case of routing
in networks. Networks these days have evolved to be very
complex, and they incorporate multiple physical paths for
redundancy and utilize complex routing methodologies to
direct the traffic. The application traffic does not always take
the optimal path we would expect, leading to unexpected and
inefficient routing performance. To tame such complexity,

unsupervised ML techniques can autonomously self-organize
the network taking into account a number of factors such as
real-time network congestion statistics as well as application
QoS requirements [24].

The purpose of this paper is to highlight the important
advances in unsupervised learning, and after providing a
tutorial introduction to these techniques, to review how such
techniques have been, or could be, used for various tasks in
modern next-generation networks comprising both computer
networks as well as mobile telecom networks.

Contribution of the paper: To the best of our knowledge,
there does not exist a survey that specifically focuses on
the important applications of unsupervised ML techniques
in networks, even though a number of surveys exist that
focus on specific ML applications pertaining to networking—
for instance, surveys on using ML for cognitive radios [11],
traffic identification and classification [10], and anomaly
detection [9] [15]. Previous survey papers have either focused
on specific unsupervised learning techniques (e.g., [25] have
provided a survey of the applications of neural networks
in wireless networks) or on some specific applications of
computer networking ( [13] have provided a survey of the
applications of ML in cyber intrusion detection). Our survey
paper is timely since there is great interest in deploying au-
tomated and self-taught unsupervised learning models in the
industry and academia. Due to relatively limited applications
of unsupervised learning in networking—in particular, the
deep learning trend has not yet impacted networking in a
major way—unsupervised learning techniques hold a lot of
promises for advancing the state of the art in networking in
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terms of adaptability, flexibility, and efficiency. The novelty
of this survey is that it covers many different important appli-
cations of unsupervised ML techniques in computer networks
and provides readers with a comprehensive discussion of the
unsupervised ML trends, as well as the suitability of various
unsupervised ML techniques. A tabulated comparison of
our paper with other existing survey and review articles is
presented in Table 1.

Organization of the paper: The organization of this paper
is depicted in Figure 1. Section II provides a discussion on
various unsupervised ML techniques (namely, hierarchical
learning, data clustering, latent variable models, and outlier
detection). Section III presents a survey of the applications
of unsupervised ML specifically in the domain of computer
networks. Section IV describes future work and opportuni-
ties with respect to the use of unsupervised ML in future
networking. Section V discusses a few major pitfalls of the
unsupervised ML approach and its models. Finally, Section
VI concludes this paper. For the reader’s facilitation, Table
2 shows all the acronyms used in this survey for convenient
referencing.

II. TECHNIQUES FOR UNSUPERVISED LEARNING
In this section, we will introduce some widely used unsuper-
vised learning techniques and their applications in computer
networks. We have divided unsupervised learning techniques
into six major categories: hierarchical learning, data clus-
tering, latent variable models, dimensionality reduction, and
outlier detection. Figure 2 depicts a taxonomy of unsuper-
vised learning techniques and also the relevant sections in
which these techniques are discussed. To provide a bet-
ter understanding of the application of unsupervised ML
techniques in networking, we have added few subsections
highlighting significant applications of unsupervised ML
techniques in networking domain.

A. HIERARCHICAL LEARNING
Hierarchical learning is defined as learning simple and com-
plex features from a hierarchy of multiple linear and non-
linear activations. In learning models, a feature is a measur-
able property of the input data. Desired features are ideally
informative, discriminative, and independent. In statistics,
features are also known as explanatory (or independent) vari-
ables [26]. Feature learning (also known as data representa-
tion learning) is a set of techniques that can learn one or more
features from input data [27]. It involves the transformation
of raw data into a quantifiable and comparable representation,
which is specific to the property of the input but general
enough for comparison to similar inputs. Conventionally,
features are handcrafted specific to the application on hand.
It relies on domain knowledge but even then they do not
generalize well to the variation of real-world data, which
gives rise to automated learning of generalized features from
the underlying structure of the input data. Like other learning
algorithms, feature learning is also divided among domains
of supervised and unsupervised learning depending on the

TABLE 2. List of common acronyms used

ADS Anomaly Detection System
AI Artificial Intelligence

A-NIDS Anomaly & Network Intrusion Detection System
ANN Artificial Neural Network
ART Adaptive Resonance Theory
BSS Blind Signal Separation

BIRCH Balanced Iterative Reducing and Clustering Using Hierarchies
CDBN Convolutional Deep Belief Network
CNN Convolutional Neural Network
CRN Cognitive Radio Network
DBN Deep Belief Network
DDoS Distributed Denial of Service
DNN Deep Neural Network
DNS Domain Name Service
DPI Deep Packet Inspection
EM Expectation-Maximization

GTM Generative Topographic Model
GPU Graphics Processing Unit

GMM Gaussian Mixture Model
HMM Hidden Markov Model
ICA Independent Component Analysis
IDS Intrusion Detection System
IoT Internet of Things

LSTM Long Short-Term Memory
LLE Locally Linear Embedding
LRD Low Range Dependencies
ML Machine Learning

MLP Multi-Layer Perceptron
MDS Multi-Dimensional Scaling
MCA Minor Component Analysis
NMF Non-Negative Matrix Factorization
NMS Network Management System
NN Neural Network

NMDS Nonlinear Multi-dimensional Scaling
OSPF Open Shortest Path First

PU Primary User
PCA Principal Component Analysis
PGM Probabilistic Graph Model
QoE Quality of Experience
QoS Quality of Service
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SDN Software Defined Network
SOM Self-Organizing Map
SON Self-Organizing Network
SVM Support Vector Machine
SON Self Organizing Network
SSAE Shrinking Sparse Autoencoder
TCP Transmission Control Protocol

t-SNE t-Distributed Stochastic Neighbor Embedding
TL Transfer Learning

VoIP Voice over IP
VoQS Variation of Quality Signature
VAE Variational Autoencoder
WSN Wireless Sensor Network

type of available data. Almost all unsupervised learning
algorithms undergo a stage of feature extraction in order to
learn data representation from unlabeled data and generate
a feature vector on the basis of which further tasks are
performed.

Hierarchical learning is intimately related to how deep
learning is performed in modern multi-layer neural networks.
In particular, deep learning techniques benefits from the
fundamental concept of artificial neural networks (ANNs),
a deep structure consists of multiple hidden layers with mul-
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FIGURE 2. Taxonomy of unsupervised learning techniques

FIGURE 3. Illustration of an ANN (left); Different types of ANN topologies (right)

tiple neurons in each layer, a nonlinear activation function,
a cost function, and a back-propagation algorithm. Deep
learning [40] is a hierarchical technique that models high-
level abstraction in data using many layers of linear and
nonlinear transformations. With deep enough stack of these
transformation layers, a machine can self-learn a very com-
plex model or representation of data. Learning takes place
in hidden layers and the optimal weights and biases of the
neurons are updated in two passes, namely, the forward pass
and backward pass. A typical ANN and typical cyclic and
acyclic topologies of interconnection between neurons are
shown in Figure 3. A brief taxonomy of Unsupervised NNs
is presented in Figure 4.

An ANN has three types of layers (namely input, hidden
and output, each having different activation parameters).
Learning is the process of assigning optimal activation pa-
rameters enabling ANN to perform input to output map-
ping. For a given problem, an ANN may require multiple

hidden layers involving a long chain of computations, i.e.,
its depth [41]. Deep learning has revolutionized ML and
is now increasingly being used in diverse settings—e.g.,
object identification in images, speech transcription into text,
matching user’s interests with items (such as news items,
movies, products) and making recommendations, etc. But
until 2006, relatively few people were interested in deep
learning due to the high computational cost of deep learning
procedures. It was widely believed that training deep learning
architectures in an unsupervised manner was intractable, and
supervised the training of deep NNs (DNN) also showed poor
performance with large generalization errors [42]. However,
recent advances [43]–[45] have shown that deep learning
can be performed efficiently by separate unsupervised pre-
training of each layer with the results revolutionizing the field
of ML. Starting from the input (observation) layer, which
acts as an input to the subsequent layers, pre-training tends
to learn data distributions while the usual supervised stage
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TABLE 3. Applications of hierarchical learning/ deep learning in networking applications

Reference Technique Brief Summary

Internet Traffic Classification

[28] SAE & CNN SAE and CNN are used for feature extraction from the Internet traffic data for classification and
characterizing purpose.

[29] CNN CNN is used to extract features from the Internet traffic where traffic is considered as an image for
malware detection.

[30] Autoencoder Autoencoder is used as a generative model to learn the latent feature representation of network traffic
vector, for cyber attack detection and classification.

Anomaly/Intrusion Detection

[31] Denoising Autoencoder Stochastically Improved autoencoder and denosing autoencoder are used to learn feature for zero day
anomaly detection in Internet traffic.

[32] RNN Gated recurrent unit and random forest techniques are used for feature extraction and anomaly detection
in IoT data.

[33] RNN RNN and DNN are employed to extract feature from raw data which then used for threat assessment
and insider threat detection in data streams.

Network Operations, Optimization and Analytics

[34] Random Neural Network Random neural network are used for extracting the quality behavior of multimedia application for
improving the QoE of multimedia applications in wireless mesh network.

[35] Random Neural Network Random neural network are used for learning the mapping between QoE score and technical parameters
so that it can give QoE score in real-time for multimedia applications in IEEE 802.11 wireless networks.

Emerging Networking Application of Unsupervised Learning

[36] DNN & CNN Hierarchical learning is used for feature extraction from spectrogram snap shots of signal for modula-
tion detection in communication system based on software defined radio.

[37] CNN Convolutional filters are used for feature extraction from cognitive radio waveforms for automatic
recognition.

[38] ANN ANN is recommended to learn the hierarchy of the output, which is later used in SON.
[39] RNN RNN variant LSTM is used for learning memory based hierarchy of time interval based IoT sensor

data, from smart cities datasets.

FIGURE 4. Taxonomy of unsupervised neural networks
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performs a local search for fine-tuning.

1) Unsupervised Multilayer Feed Forward NN
Unsupervised multilayer feedforward NN, with reference to
graph theory, has a directed graph topology as shown in Fig-
ure 3. It consists of no cycles, i.e., does not have a feedback
path in input propagation through NN. Such kind of NN
is often used to approximate a nonlinear mapping between
inputs and required outputs. Autoencoders are the prime
examples of unsupervised multilayer feedforward NNs.

a: Autoencoders
An autoencoder is an unsupervised learning algorithm for
ANN used to learn compressed and encoded representation
of data, mostly for dimensionality reduction and for un-
supervised pre-training of feedforward NNs. Autoencoders
are generally designed using approximation function and
trained using backpropagation and stochastic gradient de-
scent (SGD) techniques. Autoencoders are the first of their
kind to use the back-propagation algorithm to train with
unlabeled data. Autoencoders aim to learn a compact rep-
resentation of the function of input using the same number
of input and output units with usually less hidden units to
encode a feature vector. They learn the input data function
by recreating the input at the output, which is called encod-
ing/decoding, to learn at the time of training NN. In short, a
simple autoencoder learns a low-dimensional representation
of the input data by exploiting similar recurring patterns.

Autoencoders have different variants [46] such as vari-
ational autoencoders, sparse autoencoders, and denoising
autoencoders. Variational autoencoder is an unsupervised
learning technique used clustering, dimensionality reduction,
and visualization, and for learning complex distributions
[47]. In a sparse autoencoder, a sparse penalty on the latent
layer is applied for extracting a unique statistical feature from
unlabeled data. Finally, denoising autoencoders are used to
learn the mapping of a corrupted data point to its original
location in the data space in an unsupervised manner for
manifold learning and reconstruction distribution learning.

2) Unsupervised Competitive Learning NN
Unsupervised competitive learning NNs is a winner-take-all
neuron scheme, where each neuron competes for the right of
the response to a subset of the input data. This scheme is used
to remove the redundancies from the unstructured data. Two
major techniques of unsupervised competitive learning NNs
are self-organizing maps and adaptive resonance theory NNs.

Self-Organizing/ Kohonen Maps: Self-Organizing Maps
(SOM), also known as Kohonen’s maps [48] [49], are a spe-
cial class of NNs that uses the concept of competitive learn-
ing, in which output neurons compete amongst themselves to
be activated in a real-valued output, results having only single
neuron (or group of neurons), called winning neuron. This is
achieved by creating lateral inhibition connections (negative
feedback paths) between neurons [50]. In this orientation,
the network determines the winning neuron within several

iterations; subsequently, it is forced to reorganize itself based
on the input data distribution (hence they are called Self-
Organizing Maps). They were initially inspired by the hu-
man brain, which has specialized regions in which different
sensory inputs are represented/processed by topologically
ordered computational maps. In SOM, neurons are arranged
on vertices of a lattice (commonly one or two dimensions).
The network is forced to represent higher-dimensional data in
lower-dimensional representation by preserving the topolog-
ical properties of input data by using neighborhood function
while transforming the input into a topological space in
which neuron positions in the space are representatives of
intrinsic statistical features that tell us about the inherently
nonlinear nature of SOMs.

Training a network comprising SOM is essentially a three-
stage process after random initialization of weighted connec-
tions. The three stages are as follow [51].
• Competition: Each neuron in the network computes its

value using a discriminant function, which provides the
basis of competition among the neurons. Neuron with
the largest discriminant value in the competition group
is declared the winner.

• Cooperation: The winner neuron then locates the center
of the topological neighborhood of excited neurons in
the previous stage, providing a basis for cooperation
among excited neighboring neurons.

• Adaption: The excited neurons in the neighborhood
increase/decrease their individual values of the discrimi-
nant function in regard to input data distribution through
subtle adjustments such that the response of the winning
neuron is enhanced for similar subsequent input. Adap-
tion stage is distinguishable into two sub-stages: (1)
the ordering or self-organizing phase, in which weight
vectors are reordered according to topological space;
and (2) the convergence phase, in which the map is
fine-tuned and declared accurate to provide statistical
quantification of the input space. This is the phase in
which the map is declared to be converged and hence
trained.

One essential requirement in training a SOM is the redun-
dancy of the input data to learn about the underlying structure
of neuron activation patterns. Moreover, sufficient quantity
of data is required for creating distinguishable clusters;
withstanding enough data for classification problem, there
exist a problem of gray area between clusters and creation
of infinitely small clusters where input data has minimal
patterns.

Adaptive Resonance Theory: Adaptive Resonance Theory
(ART) is another different category of NN models that is
based on the theory of human cognitive information pro-
cessing. It can be explained as an algorithm of incremental
clustering which aims at forming multi-dimensional clusters,
automatically discriminating and creating new categories
based on input data. Primarily, ART models are classified as
an unsupervised learning model; however, there exist ART
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variants that employ supervised and semi-supervised learn-
ing approaches as well. The main setback of most NN mod-
els is that they lose old information (updating/diminishing
weights) as new information arrives, therefore an ideal model
should be flexible enough to accommodate new information
without losing the old one, and this is called the plasticity-
stability problem. ART models provide a solution to this
problem by self-organizing in real time and creating a com-
petitive environment for neurons, automatically discriminat-
ing/creating new clusters among neurons to accommodate
any new information.

ART model resonates around (top-down) observer expec-
tations and (bottom-up) sensory information while keeping
their difference within the threshold limits of vigilance pa-
rameter, which in result is considered as the member of the
expected class of neurons [52]. Learning of an ART model
primarily consists of a comparison field, recognition field,
vigilance (threshold) parameter, and a reset module. The
comparison field takes an input vector, which in result is
passed, to best match in the recognition field; the best match
is the current winning neuron. Each neuron in the recognition
field passes a negative output in proportion to the quality of
the match, which inhibits other outputs, therefore, exhibiting
lateral inhibitions (competitions). Once the winning neuron is
selected after a competition with the best match to the input
vector, the reset module compares the quality of the match
to the vigilance threshold. If the winning neuron is within the
threshold, it is selected as the output, else the winning neuron
is reset and the process is started again to find the next best
match to the input vector. In case where no neuron is capable
to pass the threshold test, a search procedure begins in which
the reset module disables recognition neurons one at a time to
find a correct match whose weight can be adjusted to accom-
modate the new match, therefore ART models are called self-
organizing and can deal with the plasticity/stability dilemma.

3) Unsupervised Deep NN
In recent years unsupervised deep NN has become the most
successful unsupervised structure due to its application in
many benchmarking problems and applications [53]. Three
major types of unsupervised deep NNs are deep belief NNs,
deep autoencoders, and convolutional NNs.

Deep Belief NN: Deep Belief Neural Network or simply
Deep Belief Networks (DBN) is a probability-based genera-
tive graph model that is composed of hierarchical layers of
stochastic latent variables having binary valued activations,
which are referred as hidden units or feature detectors. The
top layers in DBNs have undirected, symmetric connections
between them forming an associative memory. DBNs provide
a breakthrough in unsupervised learning paradigm. In the
learning stage, DBN learns to reconstruct its input, each layer
acting as feature detectors. DBN can be trained by greedy
layer-wise training starting from the top layer with raw input,
subsequent layers are trained with the input data from the
previously visible layer [43]. Once the network is trained in

an unsupervised manner and learned the distribution of the
data, it can be fine-tuned using supervised learning methods,
or supervised layers can be concatenated in order to achieve
the desired task (for instance, classification).

Deep Autoencoder: Another famous type of DBN is the
deep autoencoder, which is composed of two symmetric
DBNs—the first of which is used to encode the input vector,
while the second decodes. By the end of the training of the
deep autoencoder, it tends to reconstruct the input vector at
the output neurons, and therefore the central layer between
both DBNs is the actual compressed feature vector.

Convolutional NN: Convolutional NN (CNN) are feed
forward NN in which neurons are adapted to respond to
overlapping regions in two-dimensional input fields such as
visual or audio input. It is commonly achieved by local
sparse connections among successive layers and tied shared
weights followed by rectifying and pooling layers which
results in transformation invariant feature extraction. Another
advantage of CNN over simple multilayer NN is that it is
comparatively easier to train due to sparsely connected layers
with the same number of hidden units. CNN represents the
most significant type of architecture for computer vision as
they solve two challenges with the conventional NNs: 1)
scalable and computationally tractable algorithms are needed
for processing high-dimensional images; and 2) algorithms
should be transformation invariant since objects in an image
can occur at an arbitrary position. However, most CNN’s
are composed of supervised feature detectors in the lower
and middle hidden layers. In order to extract features in an
unsupervised manner, a hybrid of CNN and DBN, called
Convolutional Deep Belief Network (CDBN), is proposed
in [54]. Making probabilistic max-pooling1 to cover larger
input area and convolution as an inference algorithm makes
this model scalable with higher dimensional input. Learning
is processed in an unsupervised manner as proposed in [44],
i.e., greedy layer-wise (lower to higher) training with unla-
beled data.

CDBN is a promising scalable generative model for learn-
ing translation invariant hierarchical representation from any
high-dimensional unlabeled data in an unsupervised manner
taking advantage of both worlds, i.e., DBN and CNN. CNN,
being widely employed for computer vision applications,
can be employed in computer networks for optimization of
Quality of Experience (QoE) and Quality of Service (QoS) of
multimedia content delivery over networks, which is an open
research problem for next-generation computer networks
[55].

4) Unsupervised Recurrent NN
Recurrent NN (RNN) is the most complex type of NN,
and hence the nearest match to an actual human brain that
processes sequential inputs. It can learn temporal behaviors

1Max-pooling is an algorithm of selecting the most responsive receptive
field of a given interest region.
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FIGURE 5. Clustering process

of a given training data. RNN employs an internal memory
per neuron to process such sequential inputs in order to
exhibit the effect of the previous event on the next. Compared
to feed forward NNs, RNN is a stateful network. It may
contain computational cycles among states and uses time
as the parameter in the transition function from one unit to
another. Being complex and recently developed, it is an open
research problem to create domain-specific RNN models and
train them with sequential data. Specifically, there are two
perspectives of RNN to be discussed in the scope of this
survey, namely, the depth of the architecture and the training
of the network. The depth, in the case of a simple artificial
NN, is the presence of hierarchical nonlinear intermediate
layers between the input and output signals. In the case of an
RNN, there are different hypotheses explaining the concept
of depth. One hypothesis suggests that RNNs are inherently
deep in nature when expanded with respect to sequential
input; there are a series of nonlinear computations between
the input at time t(i) and the output at time t(i+ k).

However, at an individual discrete time step, certain tran-
sitions are neither deep nor nonlinear. There exist input-to-
hidden, hidden-to-hidden, and hidden-to-output transitions,
which are shallow in the sense that there are no intermediate
nonlinear layers at discrete time step. In this regard, different
deep architectures are proposed in [56] that introduce inter-
mediate nonlinear transitional layers in between the input,
hidden and output layers. Another novel approach is also
proposed by stacking hidden units to create a hierarchical
representation of hidden units, which mimic the deep nature
of standard deep NNs.

Due to the inherently complex nature of RNN, to the best
of our knowledge, there is no widely adopted approach for
training RNNs and many novel methods (both supervised
and unsupervised) are introduced to train RNNs. Considering
unsupervised learning of RNN in the scope of this paper,
[57] employ Long Short-term Memory (LSTM) RNN to
be trained in an unsupervised manner using unsupervised
learning algorithms, namely Binary Information Gain Opti-
mization and non parametric Entropy Optimization, in order
to make a network to discriminate between a set of temporal
sequences and cluster them into groups. Results have shown
remarkable ability of RNNs for learning temporal sequences
and clustering them based on a variety of features. Two major

types of unsupervised recurrent NN are Hopfield NN and
Boltzmann machine.

Hopfield NN: Hopfield NN is a cyclic recurrent NN where
each node is connected to others. Hopfield NN provides an
abstraction of circular shift register memory with nonlinear
activation functions to form a global energy function with
guaranteed convergence to local minima. Hopfield NNs are
used for finding clusters in the data without a supervisor.

Boltzmann Machine: The Boltzmann machine is a stochas-
tic symmetric recurrent NN that is used for search and learn-
ing problems. Due to binary vector based simple learning
algorithm of Boltzmann machine, very interesting features
representing the complex unstructured data can be learned
[58]. Since the Boltzmann machine uses multiple hidden lay-
ers as feature detectors, the learning algorithm becomes very
slow. To avoid slow learning and to achieve faster feature
detection instead of Boltzmann machine, a faster version,
namely the restricted Boltzmann machine (RBM), is used
for practical problems [59]. Restricted Boltzmann machine
learns a probability distribution over its input data but since
it is restricted in its layer to layer connectivity RBM loses its
property of recurrence. It is faster than a Boltzmann machine
because it only uses one hidden layer as a feature detector
layer. RBM is used for dimensionality reduction, clustering
and feature learning in computer networks.

5) Significant Applications of Hierarchical Learning in
Networks
ANNs/DNNs are the most researched topic when creat-
ing intelligent systems in computer vision and natural lan-
guage processing whereas their application in computer
networks are very limited, they are employed in differ-
ent networking applications such as classification of traffic,
anomaly/intrusion detection, detecting Distributed Denial of
Service (DDoS) attacks, and resource management in cogni-
tive radios [60]. The motivation of using DNN for learning
and predicting in networks is the unsupervised training that
detects hidden patterns in ample amount of data that is near to
impossible for a human to handcraft features catering for all
scenarios. Moreover, many new research shows that a single
model is not enough for the need of some applications, so
developing a hybrid NN architecture having pros and cons of
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different models creates a new efficient NN which provides
even better results. Such an approach is used in [61], in
which a hybrid model of ART and RNN is employed to
learn and predict traffic volume in a computer network in
real time. Real-time prediction is essential to adaptive flow
control, which is achieved by using hybrid techniques so
that ART can learn new input patterns without re-training
the entire network and can predict accurately in the time
series of RNN. Furthermore, DNNs are also being used
in resource allocation and QoE/QoS optimizations. Using
NN for optimization, efficient resource allocation without
affecting the user experience can be crucial in the time
when resources are scarce. Authors of [62], [63] propose a
simple DBN for optimizing multimedia content delivery over
wireless networks by keeping QoE optimal for end users.
Table 3 also provides a tabulated description of hierarchical
learning in networking applications. However, these are just
a few notable examples of deep learning and neural networks
in networks, refer to Section III for more applications and
detailed discussion on deep learning and neural networks in
computer networks.

B. DATA CLUSTERING
Clustering is an unsupervised learning task that aims to
find hidden patterns in unlabeled input data in the form of
clusters [64]. Simply put, it encompasses the arrangement
of data in meaningful natural groupings on the basis of
the similarity between different features (as illustrated in
Figure 5) to learn about its structure. Clustering involves
the organization of data in such a way that there are high
intra-cluster and low inter-cluster similarity. The resulting
structured data is termed as data-concept [65]. Clustering is
used in numerous applications from the fields of ML, data
mining, network analysis, pattern recognition, and computer
vision. The various techniques used for data clustering are
described in more detail later in Section II-B. In networking,
clustering techniques are widely deployed for applications
such as traffic analysis and anomaly detection in all kinds of
networks (e.g., wireless sensor networks and mobile ad-hoc
networks), with anomaly detection [66].

Clustering improves performance in various applications.
McGregor et al. [67] propose an efficient packet tracing
approach using the Expectation-Maximization (EM) proba-
bilistic clustering algorithm, which groups flows (packets)
into a small number of clusters, where the goal is to analyze
network traffic using a set of representative clusters.

A brief overview of different types of clustering methods
and their relationships can be seen in Figure 6. Clustering can
be divided into three main types [68], namely hierarchical
clustering, Bayesian clustering, and partitional clustering.
Hierarchical clustering creates a hierarchical decomposition
of data, whereas Bayesian clustering forms a probabilistic
model of the data that decides the fate of a new test point
probabilistically. In contrast, partitional clustering constructs
multiple partitions and evaluates them on the basis of certain
criterion or characteristic such as the Euclidean distance.

Before delving into the general sub-types of clustering,
there are two unique clustering techniques, which need to be
discussed, namely density-based clustering and grid-based
clustering. In some cases, density-based clustering is classi-
fied as a partitional clustering technique; however, we have
kept it separate considering its applications in networking.
Density-based models target the most densely populated area
of data space and separate it from areas having low densities,
thus forming clusters [69]. [70] use density-based clustering
to cluster data stream in real time, which is important in many
applications (e.g., intrusion detection in networks). Another
technique is grid-based clustering, which divides the data
space into cells to form a grid-like structure; subsequently,
all clustering actions are performed on this grid [71]. [71]
also present a novel approach that uses a customized grid-
based clustering algorithm to detect anomalies in networks.
[72] proposed a novel method for clustering the time series
data, this scheme was based on a distance measure between
temporal features of the time series.

We move on next to describe three major types of data
clustering approaches as per the taxonomy is shown in Figure
6.

1) Hierarchical Clustering
Hierarchical clustering is a well-known strategy in data min-
ing and statistical analysis in which data is clustered into
a hierarchy of clusters using an agglomerative (bottom-up)
or a divisive (top-down) approach. Almost all hierarchical
clustering algorithms are unsupervised and deterministic.
The primary advantage of hierarchical clustering over un-
supervised K-means and EM algorithms is that it does not
require the number of clusters to be specified beforehand.
However, this advantage comes at the cost of computational
efficiency. Common hierarchical clustering algorithms have
at least quadratic computational complexity compared to the
linear complexity of K-means and EM algorithms. Hierarchi-
cal clustering methods have a pitfall: these methods fail to ac-
curately classify messy high-dimensional data as its heuristic
may fail due to the structural imperfections of empirical data.
Furthermore, the computational complexity of the common
agglomerative hierarchical algorithms is NP-hard. SOM, as
discussed in Section II-A2, is a modern approach that can
overcome the shortcomings of hierarchical models [73].

2) Bayesian Clustering
Bayesian clustering is a probabilistic clustering strategy
where the posterior distribution of the data is learned on the
basis of a prior probability distribution. Bayesian clustering
is divided into two major categories, namely parametric and
non-parametric [74]. The major difference between para-
metric and non-parametric techniques is the dimensionality
of parameter space: if there are finite dimensions in the
parameter space, the underlying technique is called Bayesian
parametric; otherwise, the underlying technique is called
Bayesian non-parametric. A major pitfall with the Bayesian
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FIGURE 6. Clustering taxonomy

clustering approach is that the choice of the wrong prior
probability distributions can distort the projection of the
data. [75] performed Bayesian non-parametric clustering of
network traffic data to determine the network application
type.

3) Partitional Clustering
Partitional clustering corresponds to a special class of clus-
tering algorithms that decomposes data into a set of disjoint
clusters. Given n observations, the clustering algorithm par-
titions a data into k < n clusters [76]. Partitional clustering
is further classified into K-means clustering and mixture
models.

a: K-Means Clustering
K-means clustering is a simple, yet widely used approach for
classification. It takes a statistical vector as an input to de-
duce classification models or classifiers. K-means clustering
tends to distribute m observations into n clusters where each
observation belongs to the nearest cluster. The membership
of observation to a cluster is determined using the cluster
mean. K-means clustering is used in numerous applications
in the domains of network analysis and traffic classification.
[77] used K-means clustering in conjunction with supervised
ID3 decision tree learning models to detect anomalies in
a network. An ID3 decision tree is an iterative supervised
decision tree algorithm based on the concept learning system.
K-means clustering provided excellent results when used in
traffic classification. [78] showed that K-means clustering
performs well in traffic classification with an accuracy of
90%.

K-means clustering is also used in the domain of network
security and intrusion detection. [79] proposed a K-means
algorithm for intrusion detection. Experimental results on
a subset of KDD-99 dataset shows that the detection rate
stays above 96% while the false alarm rate stays below 4%.
Results and analysis of experiments on K-means algorithm
have demonstrated a better ability to search clusters globally.

Another variation of K-means is known as K-medoids, in
which rather than taking the mean of the clusters, the most

centrally located data point of a cluster is considered as the
reference point of the corresponding cluster [80]. Few of
the applications of K-medoids in the spectrum of anomaly
detection can be seen here [80] [81].

b: Mixture Models
Mixture models are powerful probabilistic models for uni-
variate and multivariate data. Mixture models are used to
make statistical inferences and deductions about the prop-
erties of the sub-populations given only observations on
the pooled population. They have also used to statistically
model data in the domains of pattern recognition, computer
vision, ML, etc. Finite mixtures, which are a basic type of
mixture model, naturally model observations that are pro-
duced by a set of alternative random sources. Inferring and
deducing different parameters from these sources based on
their respective observations lead to clustering of the set of
observations. This approach to clustering tackles drawbacks
of heuristic-based clustering methods, and hence it is proven
to be an efficient method for node classification in any large-
scale network and has shown to yield effective results com-
pared to techniques commonly used. For instance, K-means
and hierarchical agglomerative methods rely on supervised
design decisions, such as the number of clusters or validity
of models [82]. Moreover, combining the EM algorithm with
mixture models produces remarkable results in deciphering
the structure and topology of the vertices connected through
a multi-dimensional network [83]. [84] used Gaussian mix-
ture model (GMM) to outperform signature based anomaly
detection in network traffic data.

4) Significant Applications of Clustering in Networks
Clustering can be found in mostly all unsupervised learning
problems, and there are diverse applications of clustering
in the domain of computer networks. Two major network-
ing applications where significant use of clustering can be
seen are intrusion detection and Internet traffic classification.
One novel way to detect anomaly is proposed in [85], this
approach preprocesses the data using Genetic Algorithm
(GA) combined with hierarchical clustering approach called
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Balanced Iterative Reducing using Clustering Hierarchies
(BIRCH) to provide an efficient classifier based on Sup-
port Vector Machine (SVM). This hierarchical clustering
approach stores abstracted data points instead of the whole
dataset, thus giving more accurate and quick classification
compared to all past methods, producing better results in
detecting anomalies. Another approach [71] discusses the
use of grid-based and density-based clustering for anomaly
and intrusion detection using unsupervised learning. [86]
used k-shape clustering scheme for analyzing spatiotemporal
heterogeneity in mobile usage. Basically, a scalable parallel
framework for clustering large datasets with high dimensions
is proposed and then improved by inculcating frequency
pattern trees. Table 4 also provides a tabulated description
of data clustering applications in networks. These are just a
few notable examples of clustering approaches in networks:
refer to Section III for the detailed discussion on some salient
clustering applications in the context of networks.

C. LATENT VARIABLE MODELS
A latent variable model is a statistical model that relates
the manifest variables with a set of latent or hidden vari-
ables. Latent variable model allows us to express relatively
complex distributions in terms of tractable joint distributions
over an expanded variable space [95]. Underlying variables
of a process are represented in higher dimensional space
using a fixed transformation, and stochastic variations are
known as latent variable models where the distribution in
higher dimension is due to small number of hidden variables
acting in a combination [96]. These models are used for
data visualization, dimensionality reduction, optimization,
distribution learning, blind signal separation and factor anal-
ysis. Next we will begin our discussion on various latent
variable models, namely mixture distribution, factor analysis,
blind signal separation, non-negative matrix factorization,
Bayesian networks & probabilistic graph models (PGM),
hidden Markov model (HMM), and nonlinear dimensional-
ity reduction techniques (which further includes generative
topographic mapping, multi-dimensional scaling, principal
curves, Isomap, localliy linear embedding, and t-distributed
stochastic neighbor embedding).

1) Mixture Distribution
Mixture distribution is an important latent variable model
that is used for estimating the underlying density function.
Mixture distribution provides a general framework for den-
sity estimation by using the simpler parametric distributions.
Expectation maximization (EM) algorithm is used for esti-
mating the mixture distribution model [97], through max-
imization of the log-likelihood of the mixture distribution
model.

2) Factor Analysis
Another important type of latent variable model is factor
analysis, which is a density estimation model. It has been

used quite often in collaborative filtering and dimensionality
reduction. It is different from other latent variable models
in terms of the allowed variance for different dimensions
as most latent variable models for dimensionality reduction
in conventional settings use a fixed variance Gaussian noise
model. In the factor analysis model, latent variables have
diagonal covariance rather than isotropic covariance.

3) Blind Signal Separation
Blind Signal Separation (BSS), also referred to as Blind
Source Separation, is the identification and separation of
independent source signals from mixed input signals without
or very little information about the mixing process. Figure
7 depicts the basic BSS process in which source signals
are extracted from a mixture of signals. It is a fundamental
and challenging problem in the domain of signal processing
although the concept is extensively used in all types of multi-
dimensional data processing. Most common techniques em-
ployed for BSS are principal component analysis (PCA) and
independent component analysis (ICA).

a) Principal Component Analysis (PCA) is a statistical
procedure that utilizes orthogonal transformation on the data
to convert n number of possibly correlated variables into
lesser k number of uncorrelated variables named principal
components. Principal components are arranged in the de-
scending order of their variability, first one catering for the
most variable and the last one for the least. Being a primary
technique for exploratory data analysis, PCA takes a cloud
of data in n dimensions and rotates it such that maximum
variability in the data is visible. Using this technique, it brings
out the strong patterns in the dataset so that these patterns are
more recognizable thereby making the data easier to explore
and visualize.

PCA has primarily been used for dimensionality reduction
in which input data of n dimensions is reduced to k di-
mensions without losing critical information in the data. The
choice of the number of principal components is a question
of the design decision. Much research has been conducted on
selecting the number of components such as cross-validation
approximations [98]. Optimally, k is chosen such that the
ratio of the average squared projection error to the total
variation in the data is less than or equal to 1% by which 99%
of the variance is retained in the k principal components. But,
depending on the application domain, different designs can
increase/decrease the ratio while maximizing the required
output. Commonly, many features of a dataset are often
highly correlated; hence, PCA results in retaining 99% of the
variance while significantly reducing the data dimensions.

b) Independent Component Analysis (ICA) is another tech-
nique for BSS that focuses on separating multivariate input
data into additive components with the underlying assump-
tion that the components are non-Gaussian and statistically
independent. The most common example to understand ICA
is the cocktail party problem in which there are n people
talking simultaneously in a room and one tries to listen to
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TABLE 4. Applications of data clustering in networking applications

Reference Technique Brief Summary

Internet Traffic Classification

[87] K-means & EM A comparative analysis of Network traffic fault classification is performed between K-means and EM
techniques.

[88] K-means & Dissimilarity-
based clustering

Semi supervised approach for Internet traffic classification benefits from K-means and dissimilarity-
based clustering as a first step for the Internet traffic classification.

[89] K-means A novel variant of K-means clustering namely recursive time continuity constrained K-Means cluster-
ing, is proposed and used for real-time In-App activity analysis of encrypted traffic streams. Extracted
feature vector of cluster centers are fed to random forest for further classification.

Anomaly/Intrusion Detection

[90] K-means & Hierarchical
Clustering

K-means and hierarchical clustering is used to detect anomalies in call detail records of mobile wireless
networks data.

[91] GMM GMM is used for detecting the anomalies that are affecting resources in cloud data centers.
[92] K-means K-means clustering is used for clustering the input data traffic for load balancing for network security.

Dimensionality Reduction and Visualization

[93] Fuzzy Feature Clustering A new feature clustering based approach for dimensionality reduction of Internet traffic for intrusion
detection is presented.

[94] Fuzzy C-mean clustering
& PCA

This works combines data clustering technique combined with PCA is used for dimensionality
reduction and classification of the Internet traffic.

FIGURE 7. Blind signal separation (BSS): A mixed signal composed of various input signals mixed by some mixing process is blindly processed (i.e., with no or
minimal information about the mixing process) to show the original signals.

a single voice. ICA actually separates source signals from
input mixed signal by either minimizing the statistical de-
pendence or maximizing the non-Gaussian property among
the components in the input signals by keeping the under-
lying assumptions valid. Statistically, ICA can be seen as
the extension of PCA, while PCA tries to maximize the
second moment (variance) of data, hence relying heavily on
Gaussian features; on the other hand, ICA exploits inherently
non-Gaussian features of the data and tries to maximize the
fourth moment of linear combination of inputs to extract non-
normal source components in the data [99].

4) Non-Negative Matrix Factorization
Non-Negative Matrix Factorization (NMF) is a technique to
factorize a large matrix into two or more smaller matrices
with no negative values, that is when multiplied, it recon-
structs the approximate original matrix. NMF is a novel
method in decomposing multivariate data making it easy and
straightforward for exploratory analysis. By NMF, hidden
patterns and intrinsic features within the data can be iden-
tified by decomposing them into smaller chunks, enhanc-

ing the interpretability of data for analysis, with positivity
constraints. However, there exist many classes of algorithms
[100] for NMF having different generalization properties, for
example, two of them are analyzed in [101], one of which
minimizes the least square error and while the other focuses
on the Kullback-Leibler divergence keeping algorithm con-
vergence intact.

5) Hidden Markov Model
Hidden Markov Models (HMM) are stochastic models of
great utility, especially in domains where we wish to analyze
temporal or dynamic processes such as speech recognition,
primary users (PU) arrival pattern in cognitive radio networks
(CRNs), etc. HMMs are highly relevant to CRNs since many
environmental parameters in CRNs are not directly observ-
able. An HMM-based approach can analytically model a
Markovian stochastic process in which we do not have access
to the actual states, which are assumed to be unobserved or
hidden; instead, we can observe a state that is stochastically
dependent on the hidden state. It is for this reason that an
HMM is defined to be a doubly stochastic process.
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6) Bayesian Networks & Probabilistic Graph Models (PGM)
In Bayesian learning we try to find the posterior probability
distributions for all parameter settings, in this setup, we
ensure that we have a posterior probability for every possible
parameter setting. It is computationally expensive but we can
use complicated models with a small dataset and still avoid
overfitting. Posterior probabilities are calculated by dividing
the product of sampling distribution and prior distribution by
marginal likelihood; in simple words, posterior probabilities
are calculated using Bayes theorem. The basis of reinforce-
ment learning was also derived by using Bayes theorem
[102]. Since Bayesian learning is computationally expensive
a new research trend is approximate Bayesian learning [103].
Authors in [104] have given a comprehensive survey of
different approximate Bayesian inference algorithms. With
the emergence of Bayesian deep learning framework the
deployment of Bayes learning based solution is increasing
rapidly.

Probabilistic graph modeling is a concept associated with
Bayesian learning. A model representing the probabilistic
relationship between random variables through a graph is
known as a probabilistic graph model (PGM). Nodes and
edges in the graph represent a random variable and their prob-
abilistic dependence, respectively. PGM are of two types:
directed PGM and undirected PGM. Bayes networks also
fall in the regime of directed PGM. PGM is used in many
important areas such as computer vision, speech processing,
and communication systems. Bayesian learning combined
with PGM and latent variable models forms a probabilistic
framework where deep learning is used as a substrate for
making improved learning architecture for recommender sys-
tems, topic modeling, and control systems [105].

7) Significant Applications of Latent Variable Models in
Networks
In [106], authors have applied latent structure on email cor-
pus to find interpretable latent structure as well as evaluating
its predictive accuracy on missing data task. A dynamic
latent model for a social network is represented in [107].
Characterization of the end-to-end delay using a Weibull
mixture model is discussed in [108]. Mixture models for end
host traffic analysis have been explored in [109]. BSS is a
set of statistical algorithms that are widely used in differ-
ent application domains to perform different tasks such as
dimensionality reduction, correlating and mapping features,
etc. [110] employed PCA for Internet traffic classification in
order to separate different types of flows in a network packet
stream. Similarly, authors of [111] used a semi-supervised
approach, where PCA is used for feature learning and an
SVM classifier for intrusion detection in an autonomous net-
work system. Another approach for detecting anomalies and
intrusions proposed in [112] uses NMF to factorize different
flow features and cluster them accordingly. Furthermore,
ICA has been widely used in telecommunication networks to
separate mixed and noisy source signals for efficient service.
For example, [113] extends a variant of ICA called Efficient

Fast ICA (EF-ICA) for detecting and estimating the symbol
signals from the mixed CDMA signals received from the
source endpoint.

In other literature, PCA uses a probabilistic approach to
find the degree of confidence in detecting an anomaly in
wireless networks [114]. Furthermore, PCA is also chosen
as a method of clustering and designing Wireless Sensor
Networks (WSNs) with multiple sink nodes [115]. However,
these are just a few notable examples of BSS in networks,
refer to Section III for more applications and detailed discus-
sion on BSS techniques in the networking domain.

Bayesian learning has been applied for classifying Internet
traffic, where Internet traffic is classified based on the poste-
rior probability distributions. For early traffic identification in
campus network real discretized conditional probability has
been used to construct a Bayesian classifier [116]. Host-level
intrusion detection using Bayesian networks is proposed in
[117]. Authors in [118] purposed a Bayesian learning based
feature vector selection for anomalies classification in BGP.
Port scan attacks prevention scheme using a Bayesian learn-
ing approach is discussed in [119]. Internet threat detection
estimation system is presented in [120]. A new approach
towards outlier detection using Bayesian belief networks is
described in [121]. Application of Bayesian networks in
MIMO systems has been explored in [122]. Location estima-
tion using Bayesian network in LAN is discussed in [123].
Similarly, Bayes theory and PGM are both used in Low-
Density Parity Check (LDPC) and Turbo codes, which are
the fundamental components of information coding theory.
Table 5 also provides a tabulated description of latent variable
models applications in networking.

D. DIMENSIONALITY REDUCTION
Representing data in fewer dimensions is another well-
established task of unsupervised learning. Real world data
often have high dimensions—in many datasets, these dimen-
sions can run into thousands, even millions, of potentially
correlated dimensions [133]. However, it is observed that the
intrinsic dimensionality (governing parameters) of the data is
less than the total number of dimensions. In order to find the
essential pattern of the underlying data by extracting intrinsic
dimensions, it is necessary that the real essence is not lost;
e.g., it may be the case that a phenomenon is observable
only in higher-dimensional data and is suppressed in lower
dimensions, these phenomena are said to suffer from the
curse of dimensionality [134]. While dimensionality reduc-
tion is sometimes used interchangeably with feature selection
[135] [136], a subtle difference exists between the two [137].
Feature selection is traditionally performed as a supervised
task with a domain expert helping in handcrafting a set of
critical features of the data. Such an approach generally
can perform well but is not scalable and prone to judgment
bias. Dimensionality reduction, on the other hand, is more
generally an unsupervised task, where instead of choosing
a subset of features, it creates new features (dimensions) as
a function of all features. Said differently, feature selection
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TABLE 5. Applications of latent variable models in networking applications

Reference Technique Brief Summary

Internet Traffic Classification

[124] Mixture Distribution An improved EM algorithm is proposed which derives a better GMM and used for the Internet traffic
classification.

[125] PCA PCA based feature selection approach is used for the Internet traffic classification. Where PCA is
employed for feature selection and irrelevant feature removal.

[126] NMF NMF based models are applied on the data streams to find the traffic patterns which frequently occurs
in network for identification and classification of tidal traffic patterns in metro area mobile network
traffic.

Anomaly/Intrusion Detection

[127] Bayesian Networks Bayesian networks are employed for anomaly and intrusion detection such as DDoS attacks in cloud
computing networks.

[128] Hidden Semi-Markov
Model

Hidden semi-Markov model is used to detect LTE signalling attack.

Network Operations, Optimization and Analytics

[129] Bayesian Networks Scale-able Bayesian network models are used for data flow monitoring and analysis.
[130] HMM HMM and statistical analytic techniques combined with semantic analysis are used to propose a

network management tool.

Dimensionality Reduction and Visualization

[131] PCA & Factor Analysis PCA and factor analysis are used for dimensionality reduction and latent correlation identification in
mobile traffic demand data.

[132] PCA PCA is used for dimensionality reduction and orthogonal coordinates of the social media profiles in
ranking the social media profiles.

considers supervised data labels, while dimensionality reduc-
tion focuses on the data points and their distributions in an
N-dimensional space.

There exist different techniques for reducing data di-
mensions [138] including projection of higher dimensional
points onto lower dimensions, independent representation,
and sparse representation, which should be capable of recon-
structing the approximate data. Dimensionality reduction is
useful for data modeling, compression, and visualization. By
creating representative functional dimensions of the data and
eliminating redundant ones, it becomes easier to visualize
and form a learning model. Independent representation tries
to disconnect the source of variation underlying the data
distribution such that the dimensions of the representation
are statistically independent [40]. Sparse representation tech-
nique represents the data vectors in linear combinations of
small basis vectors.

It is worth noting here that many of the latent variable mod-
els (e.g., PCA, ICA, factor analysis) also function as tech-
niques for dimensionality reduction. In addition to techniques
such as PCA, ICA—which infer the latent inherent structure
of the data through a linear projection of the data—a number
of nonlinear dimensionality reduction techniques have also
been developed and will be focused upon in this section to
avoid repetition of linear dimensionality reduction techniques
that have already been covered as part of the previous subsec-
tion. Linear dimensionality reduction techniques are useful in
many settings but these methods may miss important nonlin-
ear structure in the data due to their subspace assumption,

which posits that the high-dimensional data points lie on a
linear subspace (for example, on a 2-D or 3D plane). Such
an assumption fails in high dimensions when data points
are random but highly correlated with neighbors. In such
environments nonlinear dimensionality reductions through
manifold learning techniques—which can be construed as
an attempt to generalize linear frameworks like PCA so that
nonlinear structure in data can also be recognized—become
desirable. Even though some supervised variants also exist,
manifold learning is mostly performed in an unsupervised
fashion using the nonlinear manifold substructure learned
from the high-dimensional structure of the data from the
data itself without the use of any predetermined classifier
or labeled data. Some nonlinear dimensionality reduction
(manifold learning) techniques are described below:

1) Isomap

Isomap is a nonlinear dimensionality reduction technique
that finds the underlying low dimensional geometric infor-
mation about a dataset. Algorithmic features of PCA and
MDS are combined to learn the low dimensional nonlinear
manifold structure in the data [139]. Isomap uses geodesic
distance along the shortest path to calculate the low dimen-
sion representation shortest path, which can be computed
using Dijkstra’s algorithm.

2) Generative Topographic Model

Generative topographic mapping (GTM) represents the non-
linear latent variable mapping from continuous low dimen-
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sional distributions embedded in high dimensional spaces
[140]. Data space in GTM is represented as reference vec-
tors and these vectors are a projection of latent points in
data space. It is a probabilistic variant of SOM and works
by calculating the Euclidean distance between data points.
GTM optimizes the log-likelihood function, and the resulting
probability defines the density in data space.

3) Locally Linear Embedding

Locally linear embedding (LLE) [133] is an unsupervised
nonlinear dimensionality reduction algorithm. LLE repre-
sents data in lower dimensions yet preserving the higher
dimensional embedding. LLE depicts data in a single global
coordinate of lower dimensional mapping of input data. LLE
is used to visualize multi-dimensional dimensional manifolds
and feature extraction.

4) Principal Curves

The principal curve is a nonlinear dataset summarizing tech-
nique where non-parametric curves pass through the middle
of multi-dimensional dataset providing the summary of the
dataset [141]. These smooth curves minimize the average
squared orthogonal distance between data points, this pro-
cess also resembles the maximum likelihood for nonlinear
regression in the presence of Gaussian noise [142].

5) Nonlinear Multi-dimensional Scaling

Nonlinear multi-dimensional scaling (NMDS) [143] is a non-
linear latent variable representation scheme. It works as an
alternative scheme for factor analysis. In factor analysis, a
multivariate normal distribution is assumed and similarities
between different objects are expressed as a correlation ma-
trix. Whereas NMDS does not impose such a condition, and
it is designed to reach the optimal low dimensional configu-
ration where similarities and dissimilarities among matrices
can be observed. NMDS is also used in data visualization
and mining tools for depicting the multi-dimensional data in
3 dimensions based on the similarities in the distance matrix.

6) t-Distributed Stochastic Neighbor Embedding

t-distributed stochastic neighbor embedding (t-SNE) is an-
other nonlinear dimensionality reduction scheme. It is used
to represent high dimensional data in 2 or 3 dimensions.
t-SNE constructs a probability distribution in high dimen-
sional space and constructs a similar distribution in lower
dimensions and minimizes the KullbackâĂŞLeibler (KL) di-
vergence between two distributions (which is a useful way to
measure the difference between two probability distributions)
[144].

Table 6 also provides a tabulated description of dimension-
ality reduction applications in networking. The applications
of nonlinear dimensionality reduction methods are later de-
scribed in detail in Section III-D.

E. OUTLIER DETECTION
Outlier detection is an important application of unsupervised
learning. A sample point that is distant from other samples
is called an outlier. An outlier may occur due to noise,
measurement error, heavy tail distributions and a mixture
of two distributions. There are two popular underlying tech-
niques for unsupervised outlier detection upon which many
algorithms are designed, namely the nearest neighbor based
technique and clustering based method.

1) Nearest Neighbor Based Outlier Detection
The nearest neighbor method works on estimating the Eu-
clidean distances or average distance of every sample from
all other samples in the dataset. There are many algorithms
based on nearest neighbor based techniques, with the most
famous extension of the nearest neighbor being a k-nearest
neighbor technique in which only k nearest neighbors par-
ticipate in the outlier detection [154]. Local outlier factor is
another outlier detection algorithm, which works as an exten-
sion of the k-nearest neighbor algorithm. Connectivity-based
outlier factors [155], influenced outlierness [156], and local
outlier probability models [157] are few famous examples of
the nearest neighbor based techniques.

2) Cluster Based Outlier Detection
Clustering based methods use the conventional K-means
clustering technique to find dense locations in the data and
then perform density estimation on those clusters. After
density estimation, a heuristic is used to classify the formed
cluster according to the cluster size. Anomaly score is com-
puted by calculating the distance between every point and its
cluster head. Local density cluster based outlier factor [158],
clustering based multivariate Gaussian outlier score [159]
[160] and histogram based outlier score [161] are the famous
cluster based outlier detection models in literature. SVM and
PCA are also suggested for outlier detection in literature.

3) Significant Applications of Outlier Detection in Networks
Outlier detection algorithms are used in many different appli-
cations such as intrusion detection, fraud detection, data leak-
age prevention, surveillance, energy consumption anomalies,
forensic analysis, critical state detection in designs, elec-
trocardiogram and computed tomography scan for tumor
detection. Unsupervised anomaly detection is performed by
estimating the distances and densities of the provided non-
annotated data [162]. More applications of outlier detection
schemes will be discussed in Section III

F. LESSONS LEARNT
Key lessons drawn from the review of unsupervised learning
techniques are summarized below.

1) Hierarchical learning techniques are the most popular
schemes in literature for feature detection and extrac-
tion.
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TABLE 6. Applications of dimensionality reduction in networking applications

Reference Technique Brief Summary

Internet Traffic Classification

[145] PCA & SVM Internet traffic classification model is proposed based on PCA and SVM, where PCA is employed for dimensionality
reduction and SVM for classification.

[146] SOM & Probabilistic NN Probabilistic neural network is used for dimensionality reduction and SOM for network traffic classification.

Anomaly/Intrusion Detection

[147] DBN Dimensionality reduction of high dimensional feature set is performed by training a DBN as nonlinear dimensionality
reduction tool for human activity recognition using smart phones.

[148] Autoencoders Latent representation learnt by using autoencoder is used for anomaly detection in network traffic, which is performed
by using single Gaussian and full kernel density estimation.

[149] PCA & SVM A hybrid approach for intrusion detection is described, where PCA is used to perform dimensionality reduction
operation on network data and SVM is used to detect intrusion in that low dimensional data.

Network Operations, Optimization and Analytics

[150] PCA PCA is used for low dimensional feature extraction in a mobile network planning tool based on data analytic.
[151] PCA & Simple Embedding PCA combined with simple embedding from deep learning is used for dimensionality reduction which reduces the

communication overhead between client and server.

Dimensionality Reduction and Visualization

[152] t-SNE & LSTM LSTM is applied for modulation recognition in wireless data. t-SNE is used to perform dimensionality reduction and
visualization of the wireless dataset’s FFT response.

[153] t-SNE & K-means t-SNE is used for visualizing a high dimensional Wi-Fi mobility data in 3D.

2) Learning the joint distribution of a complex distribu-
tion over an expanded variable space is a difficult task.
Latent variable models have been the recommended
and well-established schemes in literature for this prob-
lem. These models are also used for dimensionality
reduction and better representation of data.

3) Visualization of unlabeled multidimensional data is
another unsupervised task. In this research, we have
explored the dimensionality reduction as an underlying
scheme for developing better multidimensional data
visualization tools.

III. APPLICATIONS OF UNSUPERVISED LEARNING IN
NETWORKING
In this section, we will introduce some significant appli-
cations of the unsupervised learning techniques that have
been discussed in Section II in the context of computer
networks. We highlight the broad spectrum of applications in
networking and emphasize the importance of ML-based tech-
niques, rather than classical hard-coded statistical methods,
for achieving more efficiency, adaptability, and performance
enhancement.

A. INTERNET TRAFFIC CLASSIFICATION

Internet traffic classification is of prime importance in net-
working as it provides a way to understand, develop and mea-
sure the Internet. Internet traffic classification is an important
component for service providers to understand the charac-
teristics of the service such as quality of service, quality of
experience, user behavior, network security and many other
key factors related to the overall structure of a network [163].
In this subsection, we will survey the unsupervised learning
applications in network traffic classification.

As networks evolve at a rapid pace, malicious intruders are
also evolving their strategies. Numerous novel hacking and
intrusion techniques are being regularly introduced causing
severe financial jolts to companies and headaches to their
administrators. Tackling these unknown intrusions through
accurate traffic classification on the network edge, therefore,
becomes a critical challenge and an important component of
the network security domain. Initially, when networks used to
be small, simple port-based classification technique that tried
to identify the associated application with the corresponding
packet based on its port number was used. However, this
approach is now obsolete because recent malicious software
uses a dynamic port-negotiation mechanism to bypass fire-
walls and security applications. A number of contrasting
Internet traffic classification techniques have been proposed
since then, and some important ones are discussed next.

Most of the modern traffic classification methods use
different ML and clustering techniques to produce accurate
clusters of packets depending on their applications, thus pro-
ducing efficient packet classification [10]. The main purpose
of classifying network’s traffic is to recognize the destination
application of the corresponding packet and to control the
flow of the traffic when needed such as prioritizing one flow
over others. Another important aspect of traffic classification
is to detect intrusions and malicious attacks or screen out
forbidden applications (packets).

The first step in classifying Internet traffic is selecting
accurate features, which is an extremely important, yet com-
plex task. Accurate feature selection helps ML algorithms
to avoid problems like class imbalance, low efficiency, and
low classification rate. There are three major feature selection
methods in Internet traffic for classification: the filter method,
the wrapper based method, and the embedded method. These
methods are based on different ML and genetic learning
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algorithms [164]. Two major concerns in feature selection for
Internet traffic classification are the large size of data and im-
balanced traffic classes. To deal with these issues and to en-
sure accurate feature selection, a min-max ensemble feature
selection scheme is proposed in [165]. A new information-
theoretic approach for feature selection for skewed datasets
is described in [166]. This algorithm has resolved the multi-
class imbalance issue but it does not resolve the issues
of feature selection. In 2017, an unsupervised autoencoder
based scheme has outperformed previous feature learning
schemes, autoencoders were used as a generative model and
were trained in a way that the bottleneck layer learned a
latent representation of the feature set; these features were
then used for malware classification and anomaly detection
to produce results that improved the state of the art in feature
selection [30].

Much work has been done on classifying traffic based on
supervised ML techniques. Initially, in 2004, the concept of
clustering bi-directional flows of packets came out with the
use of EM probabilistic clustering algorithm, which clusters
the flows depending on various attributes such as packet size
statistics, inter-arrival statistics, byte counts, and connection
duration, etc. [67]. Furthermore, clustering is combined with
the above model [172]; this strategy uses Naïve Bayes clus-
tering to classify traffic in an automated fashion. Recently,
unsupervised ML techniques have also been introduced in
the domain of network security for classifying traffic. Major
developments include a hybrid model to classify traffic in
more unsupervised manner [173], which uses both labeled
and unlabeled data to train the classifier making it more
durable and efficient. However, later on, completely unsuper-
vised methods for traffic classification have been proposed,
and still, much work is going on in this area. Initially, a com-
pletely unsupervised approach for traffic classification was
employed using the K-means clustering algorithm combined
with log transformation to classify data into corresponding
clusters. Then, [78] highlighted that using K-means and this
method for traffic classification can improve accuracy by
10% to achieve an overall 90% accuracy.

Another improved and faster approach was proposed in
2006 [174], which examines the size of the first five packets
and determines the application correctly using unsupervised
learning techniques. This approach has shown to produce
better results than the state-of-the-art traffic classifier, and
also has removed its drawbacks (such as dealing with outliers
or unknown packets, etc.). Another similar automated traffic
classifier and application identifier can be seen in [175],
and they use the auto-class unsupervised Bayesian classifier,
which automatically learns the inherent natural classes in a
dataset.

In 2013, another novel strategy for traffic classification
known as network traffic classification using correlation was
proposed [167], which uses non-parametric NN combined
with statistical measurement of correlation within data to
efficiently classify traffic. The presented approach addressed
the three major drawbacks of supervised and unsupervised

learning classification models: firstly, they are inappropriate
for sparse complex networks as labeling of training data takes
too much computation and time; secondly, many supervised
schemes such as SVM are not robust to training data size; and
lastly, and most importantly, all supervised and unsupervised
algorithms perform poorly if there are few training samples.
Thus, classifying the traffic using correlations appears to
be more efficient and adapting. [176] compared four ANN
approaches for computer network traffic, and modeled the
Internet traffic like a time series and used mathematical
methods to predict the time series. A greedy layer-wise
training for unsupervised stacked autoencoder produced ex-
cellent classification results, but at the cost of significant
system complexity. Genetic algorithm combined with con-
straint clustering process is used for Internet traffic data
characterization [177]. In another work, a two-phased ML
approach for Internet traffic classification using K-means and
C5.0 decision tree is presented in [178] where the average
accuracy of classification was 92.37%.

A new approach for Internet traffic classification has been
introduced in 2017 by [88] in which unidirectional and bidi-
rectional information is extracted from the collected traffic,
and K-means clustering is performed on the basis of statisti-
cal properties of the extracted flows. A supervised classifier
then classifies these clusters. Another unsupervised learning
based algorithm for Internet traffic detection is described in
[179] where a restricted Boltzmann machine based SVM
is proposed for traffic detection, this paper model the de-
tection as a classification problem. Results were compared
with ANN and decision tree algorithms on the basis of
precision and recall. Application of deep learning algorithms
in Internet traffic classification has been discussed in [16],
with this work also outlining the open research challenges
in applying deep learning for Internet traffic classification.
These problems are related to training the models for big
data since Internet data for deep learning falls in big data
regime, optimization issues of the designed models given the
uncertainty in Internet traffic and scalability of deep learning
architectures in Internet traffic classification. To cope with
the challenges of developing a flexible high-performance
platform that can capture data from a high-speed network
operating at more than 60 Gbps, [180] have introduced a
platform for high-speed packet to tuple sequence conversion
which can significantly advance the state of the art in real-
time network traffic classification. In another work, [181]
used stacked autoencoders for Internet traffic classification
and produced more than 90% accurate results for the two
classes in KDD 99 dataset.

Deep belief network combined with Gaussian model em-
ployed for Internet traffic prediction in wireless mesh back-
bone network has been shown to outperform the previous
maximum likelihood estimation technique for traffic predic-
tion [182]. Given the uncertainty of WLAN channel traffic
classification is very tricky, [169] proposed a new variant
of Gaussian mixture model by incorporating universal back-
ground model and used it for the first time to classify the
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TABLE 7. Internet traffic classification with respect to unsupervised learning techniques and tasks

Reference Technique Task Brief Summary

[167] Non Parametric
NN

Hierarchical
Representations/ Deep
Learning

Applied statistical correlation with non parametric NN to produce efficient and adaptive
results in traffic classification.

[67] EM-based
clustering

Data clustering Applied EM probabilistic algorithm to cluster flows based on various attributes such as
byte counts, inter-arrival statistics, etc. in flow classification.

[168] EM-based
clustering

Data clustering Applied EM-based clustering approach to yield 9% better results compared to supervised
Naïve Bayes based approach in traffic classification.

[78] K-Means Data clustering Applied K-means clustering algorithm to produce an overall 90% accuracy in Internet
traffic classification in a completely unsupervised manner.

[169] GMM Data Clustering Applied GMM with universal background model for encrypted WLAN traffic classifica-
tion.

[170] GMM Data Clustering GMM and Kerner’s traffic theory based ML model is used to evaluate real-time Internet
traffic performance.

[171] K-Means,
DBSCAN

Data clustering Applied cluster analysis to effectively identify similar traffic using transport layer statis-
tics to overcome the problem of dynamic port allocation in port based classification.

[172] Naïve Bayes
clustering

Data clustering Applied Naïve Bayes clustering algorithm in traffic classification.

[110] PCA Blind Signal Separation Applied PCA and fast correlation based filter algorithm that yields more accurate and
stable experimental results in Internet traffic flow classification.

WLAN traffic. A brief overview of the different Internet
traffic classification systems, classified on the basis of un-
supervised technique and tasks discussed earlier, is presented
in the Table 7.

B. ANOMALY/INTRUSION DETECTION

The increasing use of networks in every domain has increased
the risk of network intrusions, which makes user privacy and
the security of critical data vulnerable to attacks. According
to the annual computer crime and security survey 2005
[199], conducted by the combined teams of CSI (Computer
Security Institute) and FBI (Federal Bureau of Investigation),
total financial losses faced by companies due to the security
attacks and network intrusions were estimated as US $130
million. Moreover, according to the Symantec Internet Se-
curity Threat Report [200], approximately 5000 new vulner-
abilities were identified in the year 2015. In addition, more
than 400 million new variants of malware programs and 9
major breaches were detected exposing 10 million identities.
Therefore, insecurity in today’s networking environment has
given rise to the ever-evolving domain of network security
and intrusion/anomaly detection [200].

In general, Intrusion Detection Systems (IDS) recognize
or identify any act of security breach within a computer or
a network; specifically, all requests which could compromise
the confidentiality and availability of data or resources of a
system or a particular network. Generally, intrusion detection
systems can be categorized into three types: (1) signature-
based intrusion detection systems; (2) anomaly detection
systems; and (3) compound/hybrid detection systems, which
include selective attributes of both preceding systems.

Signature detection, also known as misuse detection, is a
technique that was initially used for tracing and identifying
misuses of user’s important data, computer resources, and
intrusions in the network based on the previously collected or
stored signatures of intrusion attempts. The most important

benefit of a signature-based system is that a computer admin-
istrator can exactly identify the type of attack a computer is
currently experiencing based on the sequence of the packets
defined by stored signatures. However, it is nearly impossible
to maintain the signature database of all evolving possible
attacks, thus this pitfall of the signature-based technique has
given rise to anomaly detection systems.

Anomaly Detection System (ADS) is a modern intrusion
and anomaly detection system. Initially, it creates a baseline
image of a system profile, its network and user program activ-
ity. Then, on the basis of this baseline image, ADS classifies
any activity deviating from this behavior as an intrusion.
Few benefits of this technique are: firstly, they are capable
of detecting insider attacks such as using system resources
through another user profile; secondly, each ADS is based on
a customized user profile which makes it very difficult for
attackers to ascertain which types of attacks would not set an
alarm; and lastly, it detects unknown behavior in a computer
system rather than detecting intrusions, thus it is capable of
detecting any unknown sophisticated attack which is different
from the users’ usual behavior. However, these benefits come
with a trade-off, in which the process of training a system
on a user’s ‘normal’ profile and maintaining those profiles is
a time consuming and challenging task. If an inappropriate
user profile is created, it can result in poor performance.
Since ADS detects any behavior that does not align with a
user’s normal profile, its false alarm rate can be high. Lastly,
another pitfall of ADS is that a malicious user can train ADS
gradually to accept inappropriate traffic as normal.

As anomaly and intrusion detection have been a popular
research area since the origin of networking and Internet,
numerous supervised as well as unsupervised [201] learning
techniques have been applied to efficiently detect intrusions
and malicious activities. However, latest research focuses on
the application of unsupervised learning techniques in this
area due to the challenge and promise of using big data for
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TABLE 8. Anomaly & network intrusion detection systems (A-NIDS) with respect to unsupervised learning techniques

Reference Technique Brief Summary

Hierarchical Representations/ Deep Learning

[183] Hierarchical NN Applied radial basis function in a two layered hierarchical IDS to detect intruders in real time.
[184] SOM Advocated unsupervised NNs such as SOM to provide a powerful supplement to existing IDSs.
[185] SOM Overviewed the capabilities of SOM and its application in IDS.
[186] SOM Analyzed TCP data traffic patterns using SOM and detected anomalies based on abnormal behavior.
[187] SOM Applied SOM to host based intrusion detection.
[188] SOM Applied a hierarchical NN to detect intruders, emphasizing on the development of relational hierarchies

and time representation.
[189] SOM & ART Applied SOM combined with ART networks in real-time IDS.
[190] SOM & J.48 Decision

Tree
Applied SOM combined with J.48 decision tree algorithm in IDS to detect anomaly and misuses
intelligently.

[191] Multi-Layer Perceptrons
(MLP)

Presented a two-tier IDS architecture. PCA in the first tier reduces input dimensions, while MLP in the
second tier detects and recognizes attacks with low detection time and high accuracy.

Data Clustering

[71] Density & Grid Based
Clustering

Applied an unsupervised clustering strategy in density and grid based clustering algorithms to detect
anomalies.

[85] Fuzzy Rough Clustering Applied the idea of Fuzzy set theory and fuzzy rough C-means clustering algorithms in IDS to detect
abnormal behaviors in networks, producing excellent results.

[79] K-Means Applied K-means clustering in IDS to detect intrusions and anomalies.
[192] K-Means with C4.5 Deci-

sion Trees
Applied K-means clustering combined with C4.5 decision tree models to detect intrusive and anoma-
lous behavior in networks and systems.

[193] Sub-space Clustering Implemented a unique unsupervised outliers and anomaly detection approach using Sub-Space Clus-
tering and Multiple Evidence Accumulation techniques to exactly identify different kinds of network
intrusions and attacks such as DoS/DDoS, probing attacks, buffer overflows, etc.

[194] Two-Tier Clustering Applied a novel bi-layered clustering technique, in which the first layer constitutes of clustering of
packets and the second layer is responsible for anomaly detection and time correlation, to detect
intrusions.

[77] K-Means & ID3 Decision
Trees

Applied K-means clustering combined with ID3 decision tree models to detect intrusive and anomalous
behavior in systems.

[195] Centroid Based Clustering Presented a survey on intrusion detection techniques based on centroid clustering as well as other
popular unsupervised approaches.

[196] Finite GMM Applied an unsupervised greedy learning of finite GMM for anomaly detection in intrusion detection
system.

Blind Signal Separation

[111] PCA Applied PCA and SVM in IDS.
[197] PCA Applied a novel approach to translate each network connection into a data vector, and then applied

PCA to reduce its dimensionality and detect anomalies.
[198] PCA Applied PCA and dimensionality reduction techniques in attack recognition and anomaly detection.
[112] NMF Applied NMF algorithms to capture intrusion and network anomalies.

optimizing networks.

Initial work focuses on the application of basic unsu-
pervised clustering algorithms for detecting intrusions and
anomalies. In 2005, an unsupervised approach was proposed
based on density and grid-based clustering to accurately
classify the high-dimensional dataset in a set of clusters;
those points which do not fall in any cluster are marked as ab-
normal [71]. This approach has produced good results but the
false positive rate was very high. In follow-up work, another
improved approach that used fuzzy rough C-means clustering
was introduced [85] [195]. K-means clustering is also another
famous approach used for detecting anomalies which were
later proposed in 2009 [79], which showed great accuracy
and outperformed existing unsupervised methods. However,
later in 2012, an improved method which used K-means
clustering combined with the C4.5 decision tree algorithm
was proposed [192] to produce more efficient results than
prior approaches. [202] combines cluster centers and nearest

neighbors for effective feature representation which ensures
a better intrusion detection, however, a limitation with this
approach is that it is not able to detect user to resource and
remote to local attacks. Another scheme using unsupervised
learning approach for anomaly detection is presented in
[203]. The presented scheme combines subspace clustering
and correlation analysis to detect anomalies and provide
protection against unknown anomalies; this experiment used
WIDE backbone networks data [204] spanning over six years
and produced better results than previous K-means based
techniques. Work presented in [205] shows that for different
intrusions schemes, there are a small set of measurements
required to differentiate between normal and anomalous traf-
fic; the authors used two co-clustering schemes to perform
clustering and to determine which measurement subset con-
tributed the most towards accurate detection.

Another famous approach for increasing detection accu-
racy is ensemble learning, work presented in [206] employed
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many hybrid incremental ML approaches with gradient
boosting and ensemble learning to achieve better detection
performance. Authors in [207] surveyed anomaly detection
research from 2009 to 2014 and find out the unique algo-
rithmic similarity for anomaly detection in Internet traffic:
most of the algorithms studied have following similarities 1)
Removal of redundant information in training phase to en-
sure better learning performance 2) Feature selection usually
performed using unsupervised techniques and increases the
accuracy of detection 3) Use ensembles classifiers or hybrid
classifiers rather than baseline algorithms to get better results.
Authors in [208] have developed an artificial immune system
based intrusion detection system they have used density-
based spatial clustering of applications with noise to develop
an immune system against the network intrusion detection.

The application of unsupervised intrusion detection in
cloud network is presented in [209] where authors have
proposed a fuzzy clustering ANN to detect the less fre-
quent attacks and improve the detection stability in cloud
networks. Another application of unsupervised intrusion de-
tection system for clouds is surveyed in [210], where fuzzy
logic based intrusion detection system using supervised and
unsupervised ANN is proposed for intrusion detection; this
approach is used for DOS and DDoS attacks where the
scale of the attack is very large. Network intrusion anomaly
detection system (NIDS) based on K-means clustering are
surveyed in [211]; this survey is unique as it provides distance
and similarity measure of the intrusion detection and this
perspective has not been studied before 2015. Unsupervised
learning based applications of anomaly detection schemes for
wireless personal area networks, wireless sensor networks,
cyber-physical systems, and WLANs are surveyed in [212].

Another paper [213] reviewing anomaly detection has pre-
sented the application of unsupervised SVM and clustering
based applications in network intrusion detection systems.
Unsupervised discretization algorithm is used in Bayesian
network classifier for intrusion detection, which is based on
Bayesian model averaging [214]; the authors show that the
proposed algorithm performs better than the Naïve Bayes
classifier in terms of accuracy on the NSL-KDD intru-
sion detection dataset. Border gateway protocol (BGP)—the
core Internet inter-autonomous systems (inter-AS) routing
protocol—is also error prone to intrusions and anomalies.
To detect these BGP anomalies, many supervised and un-
supervised ML solutions (such as hidden Markov models
and principal component analysis) have been proposed in
literature [215]. Another problem for anomaly detection is
low volume attacks, which have become a big challenge for
network traffic anomaly detection. While long-range depen-
dencies (LRD) are used to identify these low volume attacks,
LRD usually works on aggregated traffic volume; but since
the volume of traffic is low, the attacks can pass undetected.
To accurately identify low volume abnormalities, [216] pro-
posed the examination of LRD behavior of control plane and
data plane separately to identify low volume attacks.

Other than clustering, another widely used unsupervised

technique for detecting malicious and abnormal behavior in
networks is SOMs. The specialty of SOMs is that they can au-
tomatically organize a variety of inputs and deduce patterns
among themselves, and subsequently determine whether the
new input fits in the deduced pattern or not, thus detecting
abnormal inputs [184] [185]. SOMs have also been used
in host-based intrusion detection systems in which intruders
and abusers are identified at a host system through incom-
ing data traffic [188], later on, a more robust and efficient
technique was proposed to analyze data patterns in TCP
traffic [186]. Furthermore, complex NNs have also been
applied to solve the same problem and remarkable results
have been produced. A few examples include the application
of ART combined with SOM [189]. The use of PCA can also
be seen in detecting intrusions [197]. NMF has also been
used for detecting intruders and abusers [112], and lastly
dimensionality reduction techniques have also been applied
to eradicate intrusions and anomalies in the system [198]. For
more applications, refer to Table 8, which classifies different
network anomaly and intrusion detection systems on the
basis of unsupervised learning techniques discussed earlier.

C. NETWORK OPERATIONS, OPTIMIZATIONS, AND
ANALYTICS
Network management comprises of all the operations in-
cluded in initializing, monitoring and managing of a com-
puter network based on its network functions, which are the
primary requirements of the network operations. The general
purpose of network management and monitoring systems
is to ensure that basic network functions are fulfilled, and
if there is any malfunctioning in the network, it should be
reported and addressed accordingly. Following is a summary
of different network optimization tasks achieved through
unsupervised learning models.

1) QoS/ QoE Optimization
QoS and QoE are measures of service performance and end-
user experience, respectively. QoS mainly deals with the per-
formance as seen by the user being measured quantitatively,
while QoE is a qualitative measure of subjective metrics
experienced by the user. QoS/QoE for Internet services (es-
pecially multimedia content delivery services) is crucial in
order to maximize the user experience. With the dynamic and
bursty nature of Internet traffic, computer networks should
be able to adapt to these changes without compromising
end-user experiences. As QoE is quite subjective, it heavily
relies on the underlying QoS which is affected by different
network parameters. [232] and [233] suggested different
measurable factors to determine the overall approximation
of QoS such as error rates, bit rate, throughput, transmission
delay, availability, jitters, etc. Furthermore, these factors are
used to correlate QoS with QoE in the perspective of video
streaming where QoE is essential to end-users.

The dynamic nature of the Internet dictates network design
for different applications to maximize QoS/QoE since there
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TABLE 9. Unsupervised learning techniques employed for network operations, optimizations and analytics

Reference Technique Brief Summary Network
Type

Hierarchical Representations/ Deep Learning

[217] ART fuzzy Applied ART NNs at clusterheads and sensor nodes to extract regular patterns, reducing data for lesser
communication overhead.

WSN

[218] ART Applied ART at each network node for data aggregation. WSN
[219] DNN Applied different DNN layers corresponding to WSN layers in order to compress data. WSN
[220] RNN Applied RNN to achieve optimal QoS in cognitive packet networks. Cognitive

net-
works

[221] SOM Applied SOM to cluster nodes into categories based on node location, energy and concentration; some
nodes becomes clusterheads.

WSN

[222] SOM Applied SOM to categorize and select nodes with higher energy levels to become clusterheads based on
node energy levels.

WSN

[223] SOM Applied SOM followed by K-means to cluster and select clusterheads in WSNs. WSN
[224] SOM Applied SOMs in clusterheads to find patterns in data. WSN
[225] DNN Applied a competitive neural algorithm for condition monitoring and fault detection in 3G cellular networks. Cellular

net-
works

[226] RNN Applied RNN for fault detection. RNN, which is deployed in each sensor node, takes inputs from
neighboring nodes, and generates outputs for comparison with the generated data; if the difference exceeds
a certain threshold, the node is regarded as anomalous.

WSN

Data Clustering

[227] Fuzzy C-
Means
Clustering

Applied fuzzy C-means clustering technique to select nodes with the highest residual energy to gather data
and send information using an energy-efficient routing in WSNs.

WSN

[228] K-Means
Clustering

Applied K-means clustering to design multiple sink nodes in WSNs. WSN

[229] K-Means
Partitioning

Applied K-means clustering to identify compromised nodes and applied Kullback-Leibler (KL) distance to
determine the trustworthiness (reputation) of each node in a trust-based WSN.

WSN

Blind Signal Separation

[230] PCA Applied PCA to resolve the problem of cooperative spectrum sensing in cognitive radio networks. Cognitive
radio
net-
works

[231] ICA Applied ICA based CDMA receivers to separate and identify mixed source signals. CDMA
[114] PCA Applied PCA to evaluate the degree of confidence in detection probability provided by a WSN. The

probabilistic approach is a deviation from the idealistic assumption of sensing coverage used in a binary
detection model.

WSN

[115] PCA Applied PCA for hierarchical anomaly detection in a distributed WSN. WSN

is no predefined adaptive algorithm that can be used to
fulfill all the necessary requirements for prospective appli-
cation. Due to this fact, ML approaches are employed in
order to adapt to the real-time network conditions and take
measures to stabilize/maximize the user experience. [234]
employed a hybrid architecture having unsupervised feature
learning with a supervised classification for QoE-based video
admission control and resource management. Unsupervised
feature learning in this system is carried out by using a fully
connected NN comprising RBMs, which capture descriptive
features of video that are later classified by using a supervised
classifier. Similarly, [235] presents an algorithm to estimate
the Mean Opinion Score, a metric for measuring QoE, for
VoIP services by using SOM to map quality metrics to
features.

Moreover, research has shown that QoE-driven content
optimization leads to the optimal utilization of the network.

[236] showed that 43% of the bit overhead on average can
be reduced per image delivered on the web. This is achieved
by using the quality metric VoQS (Variation of Quality Sig-
nature), which can arbitrarily compare two images in terms
of web delivery performance. By applying this metric for
unsupervised clustering of the large image dataset, multiple
coherent groups are formed in device-targeted and content-
dependent manner. In another study [237], deep learning
is used to assess the QoE of 3D images that have yet to
show good results compared with the other deterministic
algorithms. The outcome is a Reduced Reference QoE as-
sessment process for automatic image assessment, and it has
a significant potential to be extended to work on 3D video
assessment.

In [238], a unique technique of the model-based RL ap-
proach is applied to improve bandwidth availability, and
hence throughput performance, of a network. The MRL
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model is embedded in a node that creates a model of the
operating environment and uses it to generate virtual states
and rewards for the virtual actions taken. As the agent does
not need to wait for the real states and rewards from the
operating environment, it can explore various kinds of actions
on the virtual operating environment within a short period
of time which helps to expedite the learning process, and
hence the convergence rate to the optimal action. In [239],
a MARL approach is applied in which nodes exchange Q-
values among themselves and select their respective next-
hop nodes with the best possible channel conditions while
forwarding packets towards the destination. This helps to
improve throughput performance as nodes in a network en-
sure that packets are successfully sent to the destination in a
collaborative manner.

2) TCP Optimization
Transmission Control Protocol (TCP) is the core end-to-end
protocol in TCP/IP stack that provides reliable, ordered and
error-free delivery of messages between two communicating
hosts. Due to the fact that TCP provides reliable and in-order
delivery, congestion control is one of the major concerns
of this protocol, which is commonly dealt with the algo-
rithms defined in RFC 5681. However, classical congestion
control algorithms are sub-optimal in hybrid wired/wireless
networks as they react to packet loss in the same manner in
all network situations. In order to overcome this shortcoming
of classical TCP congestion control algorithms, an ML-based
approach is proposed in [240], which employs a supervised
classifier based on features learned for classifying a packet
loss due to congestion or link errors. Other approaches to
this problem currently employed in literature include using
RL that uses fuzzy logic based reward evaluator based on
game theory [241]. Another promising approach, named
Remy [242], uses a modified model of Markov decision
process based on three factors: 1) prior knowledge about
the network; 2) a traffic model based on user needs (i.e.,
throughput and delay); and 3) an objective function that is to
be maximized. By this learning approach, a customized best-
suited congestion control scheme is produced specifically for
that part of the network, adapted to its unique requirements.
However, classifying packet losses using unsupervised learn-
ing methods is still an open research problem and there is
a need for real-time adaptive congestion control mechanism
for multi-modal hybrid networks.

For more applications, refer to Table 9, which classifies
different various network optimization and operation works
on the basis of their network type and the unsupervised
learning technique used.

D. DIMENSIONALITY REDUCTION & VISUALIZATION
Network data usually consists of multiple dimensions. To
apply machine learning techniques effectively the number
of variables is needed to be reduced. Dimensionality re-
duction schemes have a number of significant potential ap-

plications in networks. In particular, dimensionality reduc-
tion can be used to facilitate network operations (e.g., for
anomaly/intrusion detection, reliability analysis, or for fault
prediction) and network management (e.g., through visual-
ization of high-dimensional networking data). A tabulated
summary of various research works using dimensionality
reduction techniques for various kinds of networking appli-
cations is provided in Table 10.

Dimensionality reduction techniques have been used to
improve the effectiveness of the anomaly/intrusion detection
system. [255] proposed a DDoS detection system in SDN
where dimensionality reduction is used for feature extrac-
tion and reduction in an unsupervised manner using stacked
sparse autoencoders. [256] proposed a flow-based anomaly
intrusion detection using replicator neural network. Proposed
network is based on an encoder and decoder where the hidden
layer between encoder and decoder performs the dimen-
sionality reduction in an unsupervised manner, this process
also corresponds to PCA. Similarly, [257] have proposed
another anomaly detection procedure where dimensionality
reduction for feature extraction is performed using multi-
scale PCA and then using wavelet analysis, so that the
anomalous traffic is separated from the flow. Dimensionality
reduction using robust PCA based on minimum covariance
determinant estimator for anomaly detection is presented in
[258]. [259] applied PCA for dimensionality reduction in
network intrusion detection application. To improve the per-
formance of intrusion detection scheme, another algorithm
based on dimensionality reduction for new feature learning
using PCA is presented in [260] [261]. [262] have reviewed
the dimensionality reduction schemes for intrusion detection
in multimedia traffic and proposed an unsupervised feature
selection scheme based on the dimensionality-reduced mul-
timedia data.

Dimensionality reduction using autoencoders performs a
vital role in fault prediction and reliability analysis of the
cellular networks, this work also recommends deep belief
networks and autoencoders as logical fault prediction tech-
niques for self-organizing networks [263]. Most of the In-
ternet applications use encrypted traffic for communication,
previously deep packet inspection (DPI) was considered a
standard way of classifying network traffic but with the
varying nature of the network application and randomization
of port numbers and payload size DPI has lost its signifi-
cance. Authors in [264] have proposed a hybrid scheme for
network traffic classification. The proposed scheme uses ex-
treme machine learning, genetic algorithms and dimension-
ality reduction for feature selection and traffic classification.
[265] applied fuzzy set theoretic approach for dimensionality
reduction along with fuzzy C-mean clustering algorithm for
the quality of web usage. In another work, [266] used Shrink-
ing Sparse AutoEncoders (SSAE) for representing high-
dimensional data and utilized SSAE in compressive sensing
settings.

Visualization of high dimensional data in lower dimension
representation is another application of dimensionality reduc-
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TABLE 10. Dimensionality reduction techniques employed for networking applications

Reference Technique Brief Summary Network Type

[243] Autoencoders Applied autoencoders to design an end-to-end communication system that can jointly
learn transmitter and receiver implementations as well as signal encodings in unsuper-
vised manner.

MIMO

[244] Autoencoders New approach for designing and optimizing the physical layer is explored using autoen-
coders for dimensionality reduction.

MIMO

[245] Convolutional
Autoencoders

Applied autoencoders for representation learning of structured radio communication
signals.

Software Radio/ Cog-
nitive Radio

[246] Multi-dimensional
Scaling

Applied distance based subspace dimensionality reduction technique for anomaly detec-
tion in data traffic.

Internet Traffic

[247] Multi-dimensional
Scaling

Used MDS to preprocess a statistical dataset for cell outage detection in SON. SON

[248] Sparse Gaussian
Method

Applied sparse Gaussian method for linear dimensionality reduction over noisy channels
in wireless sensor networks.

WSN

[249] PCA Applied linear and nonlinear dimensionality reduction techniques along with support
vector machine for cognitive radio.

Cognitive Radio

[250] PCA Applied L1 norm PCA for dimensionality reduction in network intrusion detection
system.

Internet Traffic

[251] PCA Applied PCA for diemensionality reduction in anomaly detection for cyber security
applications.

SMS

[252] Manifold Learning Proposed a manifold learning based visualization tool for network traffic visualization
and anomaly detection.

Internet Traffic

[253] Transfer Learning and
t-SNE

Used transfer learning for multimedia web mining and t-SNE for dimensionality reduction
and visualization of web mining resultant model.

Multimedia Web

[254] Clustering and t-SNE Proposed an early threat detection scheme using darknet data, where clustering is used
for threat detection and dimensionality reduction for visualization is performed by using
t-SNE.

Internet Traffic

tion. There are many relevant techniques such as PCA and
t-SNE that can be used to extract the underlying structure of
high-dimensional data, which can then be visualized to aid
human insight seeking and decision making [144]. A num-
ber of researchers have proposed to utilize dimensionality
reduction techniques to aid visualization of networking data.
[252] proposed a manifold learning based visualization tool
for network traffic visualization and anomaly detection. [267]
proposed a PCA-based solution for the detection and visual-
ization of networking attacks, in which PCA is used for the
dimensionality reduction of the feature vector extracted from
KDD network traffic dataset. [268] used t-SNE for depicting
malware fingerprints in their proposed network intrusion
detection system. [269] proposed a rectangular dualization
scheme for visualizing the underlying network topology.
[270] used dimensionality reduction and t-SNE of clustering
and visualization of botnet traffic. Finally, a lightweight
platform for home Internet monitoring is presented in [271]
where PCA and t-SNE are used for dimensionality reduction
and visualization of the network traffic. A number of tools
are readily available—e.g., Divvy [272], Weka [273]—that
implement dimensionality reduction and other unsupervised
ML techniques (such as PCA and manifold learning) and
allow exploratory data analysis and visualization of high-
dimensional data.

Dimensionality reduction techniques and tools have been
utilized in all kinds of networks and we present some re-
cent examples related to self-organizing networks (SONs)
and software-defined radios (SDRs). [274] proposed a semi-
supervised learning scheme for anomaly detection in SON

based on dimensionality reduction and fuzzy classification
technique. [275] used minor component analysis (MCA) for
dimensionality reduction as a preprocessing step for user-
level statistical data in LTE-A networks to detect the cell
outage. [247] used multi-dimensional scaling (MDS), a di-
mensionality reduction scheme, as part of the preprocess-
ing step for cell outage detection in SON. Another data-
driven approach by [276] also uses MDS for getting a low
dimensional embedding of target key point indicator vector
as a preprocessing step to automatically detect cell outage
in SON. [277] used PCA for dimensionality reduction of
drive test samples to detect cell outages autonomously in
SON. Conventional routing schemes are not sufficient for
the fifth generation of communication systems. [278] pro-
posed a supervised deep learning based routing scheme for
heterogeneous network traffic control. Although supervised
approach performed well, gathering a lot of heterogeneous
traffic with labels, and then processing them with a plain
ANN is computationally extensive and prone to errors due
to the imbalanced nature of the input data and the potential
for overfitting. In 2017, [279] has presented a deep learning
based approach for routing and cost-effective packet process-
ing. The proposed model uses deep belief architecture and
benefits from the dimensionality reduction property of the
restricted Boltzmann machine. The proposed work also pro-
vides a novel Graphics Processing Unit (GPU) based router
architecture. The detailed analysis shows that deep learning
based SDR and routing technique can meet the changing net-
work requirements and massive network traffic growth. The
routing scheme proposed in [279] outperforms conventional
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open shortest path first (OSPF) routing technique in terms of
throughput and average delay per hop.

E. EMERGING NETWORKING APPLICATIONS OF
UNSUPERVISED LEARNING
Next generation network architectures such as Software-
defined Networks (SDN), Self Organizing Networks (SON),
and the Internet of Things (IoT) are expected to be the basis
of future intelligent, adaptive, and dynamic networks [280].
ML techniques will be at the center of this revolution provid-
ing the aforementioned properties. This subsection covers the
recent applications of unsupervised ML techniques in SDNs,
SONs, and IoTs.

1) Software Defined Networks
SDN is a disruptive new networking architecture that sim-
plifies network operating and managing tasks and provides
infrastructural support for novel innovations by making the
network programmable [281]. In simple terms, the idea of
programmable networks is to simply decouple the data for-
warding plane and control/decision plane, which is rather
tightly coupled in the current infrastructure. The use of SDN
can also be seen in managing and optimizing networks as net-
work operators go through a lot of hassle to implement high-
level security policies in term of distributed low-level system
configurations, thus SDN resolves this issue by decoupling
the planes and giving network operators better control and
visibility over network, enabling them to make frequent
changes to network state and providing support for high-level
specification language for network control [282]. SDN is
applicable in a wide variety of areas ranging from enterprise
networks, data centers, infrastructure based wireless access
networks, optical networks to home and small businesses,
each providing many future research opportunities [281].

Unsupervised ML techniques are seeing a surging interest
in SDN community as can be seen by a spate of recent
work. A popular application of unsupervised ML techniques
in SDNs relates to the application of intrusion detection and
mitigation of security attacks [283]. Another approach for de-
tecting anomalies in a cloud environment using unsupervised
learning model has been proposed by [284] that uses SOM to
capture emergent system behavior and predict unknown and
novel anomalies without any prior training or configuration.
A DDoS detection system for SDN is presented in [255]
where stacked autoencoders are used to detect DDoS attacks.
A density peak based clustering algorithm for DDoS attack
is proposed as a new method to review the potentials of using
SDN to develop an efficient anomaly detection method [285].
[286] have recently presented an intelligent threat aware
response system for SDN using reinforcement learning, this
work also recommends using unsupervised feature learning
to improve the threat detection process. Another framework
for anomaly detection, classification, and mitigation for SDN
is presented in [287] where unsupervised learning is used
for traffic feature analysis. [288] have presented a forensic

framework for SDN and recommended K-means clustering
for anomaly detection in SDN. Another work [289] discusses
the potential opportunities for using unsupervised learning
for traffic classification in SDN. Moreover, deep learning and
distributed processing can also be applied to such models in
order to better adapt to evolving networks and contribute to
the future of SDN infrastructure as a service.

2) Self Organizing Networks
SON is another new and popular research regime in network-
ing, SON is inspired by the biological system which works
in the self-organization and achieves the task by learning
from the surrounding environment. As the connected network
devices are growing exponentially, and the communication
cell size has reduced to femtocells, the property of self-
organization is becoming increasingly desirable [290]. Fea-
sibility of SON application in the fifth generation (5G) of
wireless communication is studied in [291] and the study
shows that without (supervised as well as unsupervised)
ML support, SON is not possible. Application of ML tech-
niques in SON has become a very important research area
as it involves learning from the surroundings for intelligent
decision-making and reliable communication [2].

Application of different ML-based SON for heterogeneous
networks is considered in [292], this paper also describes the
unsupervised ANN and hidden Markov models techniques
employed for better learning from the surroundings and
adapting accordingly. PCA and clustering are the two most
used unsupervised learning schemes utilized for parameter
optimization and feature learning in SON [290]. These ML
schemes are used in self-configuration, self-healing, and self-
optimization schemes. Game theory is another unsupervised
learning approach used for designing self-optimization and
greedy self-configuration design of SON systems [293]. Au-
thors in [294] proposed an unsupervised ANN for link quality
estimation of SON which outperformed simple moving aver-
age and exponentially weighted moving averages.

3) Internet of Things
IoT is an emerging paradigm with a growing academic and
industry interest. IoT is an abstraction of intelligent, physical
and virtual devices with unique identities, connected together
to form a cyber-physical framework. These devices collect,
analyze and transmit data to public or private cloud for
intelligent [295]. IoT is a new networking paradigm and it
is expected to be deployed in health care, smart cities, home
automation, agriculture, and industry. With such a vast plane
of applications, IoT needs ML to collect and analyze data to
make intelligent decisions. The key challenge that IoT must
deal with is the extremely large scale (billions of devices)
of future IoT deployments [296]. Designing, analyzing and
predicting are the three major tasks and all involve ML, a
few examples of unsupervised ML are shared next. [297]
recommend using unsupervised ML techniques for feature
extraction and supervised learning for classification and pre-
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dictions. Given the scale of the IoT, a large amount of data is
expected in the network and therefore requires a load balanc-
ing method, a load balancing algorithm based on a restricted
Boltzmann machine is proposed in [298]. Online clustering
scheme forms dynamic IoT data streams is described in
[299]. Another work describing an ML application in IoT
recommends a combination of PCA and regression for IoT to
get better prediction [300]. Usage of clustering technique in
embedded systems for IoT applications is presented in [301].
An application using denoising autoencoders for acoustic
modeling in IoT is presented in [302].

F. LESSONS LEARNT
Key lessons drawn from the review of unsupervised learning
in networking applications are summarized below:

1) A recommended and well-studied method for unsu-
pervised Internet traffic classification in literature is
data clustering combined with the latent representation
learning on traffic feature set by using autoencoders.
Min-max ensemble learning will help to increase the
efficiency of unsupervised learning if required.

2) Semi-supervised learning is also an appropriate
method for Internet traffic classification given some
labeled traffic data and channel characteristics are
available for initial model training.

3) Application of generative models and transfer learn-
ing for the Internet traffic classification has not been
explored properly in literature and can be a potential
research direction.

4) The overwhelming growth in network traffic and ex-
pected surge in traffic with the evolution of 5G and
IoT also elevates the level of threat and anomalies
in network traffic. To deal with these anomalies in
Internet traffic, data clustering, PCA, SOM, and ART
are well explored unsupervised learning techniques
in the literature. Self-taught learning has also been
explored as a potential solution for anomaly detection
and remains a possible research direction for future
research in anomaly detection in network traffic.

5) Current state of the art in dimensionality reduction in
network traffic is based on PCA and multidimensional
scaling. Autoencoders, t-SNE, and manifold learning
are potential areas of research in terms of dimensional-
ity reduction and visualization.

IV. FUTURE WORK: SOME RESEARCH CHALLENGES
AND OPPORTUNITIES
This section provides a discussion on some open directions
for future work and the relevant opportunities in applying
unsupervised ML in the field of networking.

A. SIMPLIFIED NETWORK MANAGEMENT
While new network architectures such as SDN have been
proposed in recent years to simplify network management,
network operators are still expected to know too much, and
to correlate between what they know about how their network

is designed with the current network’s condition through their
monitoring sources. Operators who manage these require-
ments by wrestling with complexity manually will definitely
welcome any respite that they can get from (semi-)automated
unsupervised machine learning. As highlighted in by [303],
for ML to become pervasive in networking, the “semantic
gap”—which refers to the key challenge of transferring ML
results into actionable insights and reports for the network
operator—must be overcome. This can facilitate a shift from
a reactive interaction style for network management, where
the network manager is expected to check maps and graphs
when things go wrong, to a proactive one, where automated
reports and notifications are created for different services and
network regions. Ideally, this would be abstract yet informa-
tive, such as Google Maps Directions, e.g. “there is heavier
traffic than usual on your route” as well as suggestions about
possible actions. This could be coupled with an automated
correlation of different reports coming from different parts
of the network. This will require a move beyond mere no-
tifications and visualizations to more substantial synthesis
through which potential sources of problems can be identi-
fied. Another example relates to making measurements more
user-oriented. Most users would be more interested in QoE
instead of QoS, i.e., how the current condition of the network
affects their applications and services rather than just raw
QoS metrics. The development of measurement objectives
should be from a business-eyeball perspective—and not only
through presenting statistics gathered through various tools
and protocols such as traceroute, ping, BGP, etc. with the
burden of putting the various pieces of knowledge together
being on the user.

B. SEMI-SUPERVISED LEARNING FOR COMPUTER
NETWORKS
Semi-supervised learning lies between supervised and unsu-
pervised learning. The idea behind semi-supervised learn-
ing is to improve the learning ability by using unlabeled
data incorporation with a small set of labeled examples.
In computer networks, semi-supervised learning is partially
used in anomaly detection and traffic classification and has
great potential to be used with deep unsupervised learning
architectures like generative adversarial networks for im-
proving the state of the art in anomaly detection and traffic
classification. Similarly, user behavior learning for cyberse-
curity can also be tackled in a semi-supervised fashion. A
semi-supervised learning based anomaly detection approach
is presented in [304]. The presented approach used large
amounts of unlabeled samples together with labeled samples
to build a better intrusion detection classifier. In particular, a
single hidden layer feed-forward NN has trained to output
a fuzzy membership vector. The results show that using
unlabeled samples help significantly improve the classifier’s
performance. In another work, [305] have proposed semi-
supervised learning with 97% accuracy to filter out non-
malicious data in millions of queries that Domain Name
Service (DNS) servers receive.
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C. TRANSFER LEARNING IN COMPUTER NETWORKS
Transfer learning is an emerging ML technique in which
knowledge learned from one problem is applied to a different
but related problem [306]. Although it is often thought that
for ML algorithms, the training and future data must be in the
same feature space and must have the same distribution, this
is not necessarily the case in many real-world applications. In
such cases, it is desirable to have transfer learning or knowl-
edge transfer between the different task domains. Transfer
learning has been successfully applied in computer vision
and NLP applications but its implementation for networking
has not been witnessed—even though in principle, this can
be useful in networking as well due to the similar nature
of Internet traffic and enterprise network traffic in many re-
spects. [307] used transfer learning based caching procedure
for wireless networks providing backhaul offloading in 5G
networks.

D. FEDERATED LEARNING IN COMPUTER NETWORKS
Federated learning is a collaborative ML technique, which
does not make use of centralized training data, and works by
distributing the processing on different machines. Federated
learning is considered to be the next big thing in cloud
networks as they ensure the privacy of the user data and less
computation on the cloud to reduce the cost and energy [308].
System and method for network address management in the
federated cloud are presented in [309] and the application
of federated IoT and cloud computing for health care is
presented in [310]. An end-to-end security architecture for
federated cloud and IoT is presented in [311].

E. GENERATIVE ADVERSARIAL NETWORKS (GANS) IN
COMPUTER NETWORKS
Adversarial networks—based on generative adversarial net-
work (GAN) training originally proposed by Goodfellow
and colleagues at the University of Montreal [312]—have
recently emerged as a new technique using which machines
can be trained to predict outcomes by only the observing the
world (without necessarily being provided labeled data). An
adversarial network has two NN models: a generator which
is responsible for generating some type of data from some
random input and a discriminator, which has the task of
distinguishing between input from the generator or a real data
set. The two NNs optimize themselves together resulting in
a more realistic generation of data by the generator, and a
better sense of what is plausible in the real world for the
discriminator. [313] proposed a GAN for generating malware
examples to attack a malware classifier and then proposes a
defense against it. Another adversarial perturbation attack on
malware classifier is proposed in [314]. The use of GANs
for ML in networking can improve the performance of ML-
based networking applications such as anomaly detection in
which malicious users have an incentive to adversarial craft
new attacks to avoid detection by network managers.

V. PITFALLS AND CAVEATS OF USING UNSUPERVISED
ML IN NETWORKING
With the benefits and intriguing results of unsupervised learn-
ing, there also exist many shortcomings that are not addressed
widely in the literature. Some potential pitfalls and caveats
related to unsupervised learning are discussed next.

A. INAPPROPRIATE TECHNIQUE SELECTION
To start with, the first potential pitfall could be the selection
of technique. Different unsupervised learning and predicting
techniques may have excellent results on some applications
while performing poorly on others—it is important to choose
the best technique for the task at hand. Another reason could
be a poor selection of features or parameters on which basis
predictions are made—thus parameter optimization is also
important for unsupervised algorithms.

B. LACK OF INTERPRETABILITY OF SOME
UNSUPERVISED ML ALGORITHMS
Some unsupervised algorithms such as deep NNs operate as
a black box, which makes it difficult to explain and interpret
the working of such models. This makes the use of such
techniques unsuitable for applications in which interpretabil-
ity is important. As pointed out in [303], understandability
of the semantics of the decisions made by ML is espe-
cially important for the operational success of ML in large-
scale operational networks and its acceptance by operators,
network managers, and users. But prediction accuracy and
simplicity are often in conflict [315]. As an example, the
greater accuracy of NNs accrues from its complex nature in
which input variables are combined in a nonlinear fashion
to build a complicated hard-to-explain model; with NNs it
may not be possible to get interpretability as well since they
make a tradeoff in which they sacrifice interpretability to
achieve high accuracy. There are various ongoing research
efforts that are focused on making techniques such as NNs
less opaque [316]. Apart from the focus on NNs, there is a
general interest in making AI and ML more explainable and
interpretable—e.g., the Defense Advanced Research Projects
Agency or DARPA’s explainable AI project2 is aiming to
develop explainable AI models (leveraging various design
options spanning the performance-vs-explainability trade-
off space) that can explain the rationale of their decision-
making so that users are able to appropriately trust these
models particularly for new envisioned control applications
in which optimization decisions are made autonomously by
algorithms.

C. LACK OF OPERATIONAL SUCCESS OF ML IN
NETWORKING
In literature, researchers have noted that despite substantial
academic research, and practical applications of unsuper-
vised learning in other fields, we see that there is a dearth
of practical applications of ML solutions in operational

2https://www.darpa.mil/program/explainable-artificial-intelligence

https://www.darpa.mil/program/explainable-artificial-intelligence
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networks—particular for applications such as network intru-
sion detection [303], which are challenging problems for a
number of reasons including 1) the very high cost of errors;
2) the lack of training data; 3) the semantic gap between
results and their operational interpretation; 4) enormous vari-
ability in input data; and finally, 5) fundamental difficulties
in conducting sound performance evaluations. Even for other
applications, the success of ML and its wide adoption in
practical systems at scale lags the success of ML solutions
in many other domains.

D. IGNORING SIMPLE NON-MACHINE-LEARNING
BASED TOOLS
One should also keep in mind a common pitfall that aca-
demic researchers may suffer from which is not realizing that
network operators may have simpler non-machine learning
based solutions that may work as well as naïve ML-based
solutions in practical settings. Failure to examine the ground
realities of operational networks will undermine the effec-
tiveness of ML-based solutions. We should expect ML-based
solutions to augment and supplement rather than replace
other non-machine-learning based solutions—at least for the
foreseeable future.

E. OVERFITTING
Another potential issue with unsupervised models is over-
fitting; it corresponds to a model representing the noise
or random error rather than learning the actual pattern in
data. While commonly associated with supervised ML, the
problem of overfitting lurks whenever we learn from data and
thus is applicable to unsupervised ML as well. As illustrated
in Figure 8, ideally speaking, we expect ML algorithms to
provide improved performance with more data; but with in-
creasing model complexity, performance starts to deteriorate
after a certain point—although, it is possible to get poorer
results empirically with increasing data when working with
unoptimized out-of-the-box ML algorithms [317]. According
to the Occam Razor principle, the model complexity should
be commensurate with the amount of data available, and with
overly complex models, the ability to predict and generalize
diminishes. Two major reasons for overfitting could be the
overly large size of the learning model and fewer sample data
used for training purposes. Generally, data is divided into
two portions (actual data and stochastic noise); due to the
unavailability of labels or related information, unsupervised
learning model can overfit the data, which causes issues in
testing and deployment phase. Cross-validation, regulariza-
tion, and Chi-squared testing are highly recommended for
designing or tweaking an unsupervised learning algorithm to
avoid overfitting [318].

F. DATA QUALITY ISSUES
It should be noted that all ML is data dependent, and the
performance of ML algorithms is affected largely by the
nature, volume, quality, and representation of data. In the
case of unsupervised ML data quality issues must be care-

fully considered since any problem with the data quality
will seriously mar the performance of ML algorithms. A
potential problem is that dataset may be imbalanced if the
samples size from one class is very much smaller or larger
than the other classes [319]. In such imbalanced datasets,
the algorithm must be careful not to ignore the rare class
by assuming it to be noise. Although imbalanced datasets
are more of a nuisance for supervised learning techniques,
they may also pose problems for unsupervised and semi-
supervised learning techniques.

G. INACCURATE MODEL BUILDING
It is difficult to build accurate and generic models since
each model is optimized for certain kind of applications.
Unsupervised ML models should be applied after carefully
studying the application and the suitability of the algorithm in
such settings [320]. For example, we highlight certain issues
related to the unsupervised task of clustering: 1) random
initialization in K-means is not recommended; 2) number of
clusters is not known before the clustering operation as we
do not have labels; 3) in the case of hierarchical clustering,
we do not know when to stop and this can cause increase
in the time complexity of the process, and 4) evaluating the
clustering result is very tricky since the ground truth is mostly
unknown.

H. MACHINE LEARNING IN ADVERSARIAL
ENVIRONMENTS
Many networking problems, such as anomaly detection, are
adversarial problems in which the malicious intruder is con-
tinually trying to outwit the network administrators (and the
tools used by the network administrators). In such settings,
machine learning that learns from historical data may not
perform due to clever crafting of attacks specifically for
circumventing any schemes based on previous data.

Due to these challenges, pitfalls, and weaknesses, due
care must be exercised while using unsupervised and semi-
supervised ML. These pitfalls can be avoided in part by using
various best practices [321], such as end-to-end learning
pipeline testing, visualization of the learning algorithm, regu-
larization, proper feature engineering, dropout, sanity checks
through human inspection—whichever is appropriate for the
problem’s context.

VI. CONCLUSIONS
We have provided a comprehensive survey of machine learn-
ing tasks, latest unsupervised learning techniques, and trends,
along with a detailed discussion of the applications of these
techniques in networking related tasks. Despite the recent
wave of success of unsupervised learning, there is a scarcity
of unsupervised learning literature for computer networking
applications, which this survey aims to address. The few
previously published survey papers differ from our work in
their focus, scope, and breadth; we have written this paper
in a manner that carefully synthesizes the insights from these
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FIGURE 8. Intuitively, we expect the ML model’s performance to improve with more data but to deteriorate in performance if the model becomes overly complex for
the data. Figure adapted from [317].

survey papers while also providing contemporary coverage of
recent advances. Due to the versatility and evolving nature of
computer networks, it was impossible to cover each and every
application; however, an attempt has been made to cover all
the major networking applications of unsupervised learning
and the relevant techniques. We have also presented concise
future work and open research areas in the field of network-
ing, which is related to unsupervised learning, coupled with a
brief discussion of significant pitfalls and challenges in using
unsupervised machine learning in networks.
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[308] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[309] A. Gokhale and A. Bhagwat, “System and method for network address
administration and management in federated cloud computing networks,”
May 30 2017. US Patent 9,667,486.

[310] J. H. Abawajy and M. M. Hassan, “Federated internet of things and
cloud computing pervasive patient health monitoring system,” IEEE
Communications Magazine, vol. 55, no. 1, pp. 48–53, 2017.

[311] P. Massonet, L. Deru, A. Achour, S. Dupont, A. Levin, and M. Villari,
“End-to-end security architecture for federated cloud and IoT networks,”
in Smart Computing (SMARTCOMP), 2017 IEEE International Confer-
ence on, pp. 1–6, IEEE, 2017.

[312] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[313] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[314] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[315] L. Breiman, “Statistical modeling: The two cultures (with comments and
a rejoinder by the author),” Statistical science, vol. 16, no. 3, pp. 199–231,
2001.

[316] I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller, “Interpretable
deep neural networks for single-trial eeg classification,” Journal of neu-
roscience methods, vol. 274, pp. 141–145, 2016.

[317] X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan, “Do we need more
training data?,” International Journal of Computer Vision, vol. 119, no. 1,
pp. 76–92, 2016.

[318] P. Domingos, “A few useful things to know about machine learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[319] A. Amin, S. Anwar, A. Adnan, M. Nawaz, N. Howard, J. Qadir,
A. Hawalah, and A. Hussain, “Comparing oversampling techniques to
handle the class imbalance problem: a customer churn prediction case
study,” IEEE Access, vol. 4, pp. 7940–7957, 2016.

[320] G. P. Zhang, “Avoiding pitfalls in neural network research,” Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on, vol. 37, no. 1, pp. 3–16, 2007.

[321] A. Ng, “Advice for applying machine learning,” Stanford University, http:
//cs229.stanford.edu/materials/ML-advice.pdf, 2011.

MUHAMMAD USAMA received his bachelor de-
gree in Telecommunication Engineering from the
Government College University, Faisalabad, Pak-
istan in 2010. He has completed his master’s de-
gree from National University of Computer and
Emerging Sciences, Islamabad. Currently, he is
pursuing Ph.D.in Electrical Engineering from the
Information Technology University, Lahore, Pak-
istan. His research interests include adversarial
machine learning and computer networks.

JUNAID QADIR is an Associate Professor at the
Information Technology University (ITU)-Punjab,
Lahore, Pakistan. He is the Director of the IH-
SAN Lab at ITU that focuses on deploying ICT
for development, and is engaged in systems and
networking research. Prior to joining ITU, he was
an Assistant Professor at the School of Electri-
cal Engineering and Computer Sciences (SEECS),
National University of Sciences and Technology
(NUST), Pakistan. At SEECS, he directed the

Cognet Lab at SEECS that focused on cognitive networking and the ap-
plication of computational intelligence techniques in networking. He has
been awarded the highest national teaching award in Pakistan-the higher
education commission′s (HEC) best university teacher award-for the year
2012-2013. His research interests include the application of algorithmic,
machine learning, and optimization techniques in networks. In particular, he
is interested in the broad areas of wireless networks, cognitive networking,
software-defined networks, and cloud computing. He serves as an Associate
Editor for IEEE Access, IEEE Communication Magazine, and Springer
Nature Big Data Analytics. He is a member of ACM, and a senior member
of IEEE.

AUNN RAZA received the B.S. degree in Com-
puter Science from National University of Sci-
ences and Technology (NUST), Pakistan in 2016
and currently a doctoral student in Data Intensive
Applications and Systems (DIAS) Laboratory at
EPFL, Switzerland. His research interests include
distributed, high-performance and data manage-
ment systems. In particular, he is interested in scal-
ability and adaptivity of data management systems
and their designs for modern hardware.

HUNAIN ARIF received the B.S degree in com-
puter science from National University of Sci-
ences and Technology (NUST), Pakistan in 2016
and the M.S degree in Computer Science with a
specialization in Data Analytics from the Swin-
burne University of Technology, Australia in 2019.
He is currently employed as a CRM System An-
alyst at BUPA Health Insurance. His role entails
the deployment of the latest business intelligence
and data analytics tools and processes in their

CRM/ERP Systems. He is also currently involved with Microsoft in BUPA’s
employee exchange program for the performance enhancement of their latest
CRM, Microsoft Dynamics 365.

http://cs229.stanford.edu/materials/ML-advice.pdf
http://cs229.stanford.edu/materials/ML-advice.pdf


2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2916648, IEEE Access

KOK-LIM ALVIN YAU received the B.Eng. degree
(Hons.) in electrical and electronics engineering
from Universiti Teknologi PETRONAS, Malaysia,
in 2005, the M.Sc. degree in electrical engineer-
ing from the National University of Singapore, in
2007, and the Ph.D. degree in network engineering
from the Victoria University of Wellington, New
Zealand, in 2010. He is currently a Professor with
the Department of Computing and Information
Systems, Sunway University. He is also a Re-

searcher, Lecturer, and Consultant in cognitive radio, wireless networks,
applied artificial intelligence, applied deep learning, and reinforcement
learning. He was a recipient of the 2007 Professional Engineer Board of
the Singapore Gold Medal for being the best graduate of the M.Sc. degree,
in 2006/2007. He serves as a TPC Member and a Reviewer for major
international conferences, including ICC, VTC, LCN, GLOBECOM, and
AINA. He also served as the Vice General Co-Chair of ICOIN18, the Co-
Chair of IET ICFCNA′14, and the Co-Chair (Organizing Committee) of IET
ICWCA′12. He serves as an Editor for the KSII Transactions on Internet
and Information Systems, an Associate Editor for the IEEE ACCESS, a
Guest Editor for the Special Issues of the IEEE ACCESS, the IET Networks,
the IEEE Computational Intelligence Magazine, the Journal of Ambient
Intelligence and Humanized Computing (Springer), and a regular Reviewer
for over 20 journals, including the IEEE journals and magazines, the Ad Hoc
Networks, the IET Communications, and others.

YEHIA ELKHATIB is a Lecturer (Assistant Pro-
fessor) of distributed systems at the School of
Computing and Communications of Lancaster
University, UK, and a visiting professor at Ecole
de Technologie Superieure, Montreal. He works
to enable distributed applications to traverse in-
frastructural boundaries. In the context of cloud
computing, this entails looking into interoperabil-
ity and migration challenges, as well as related
decision support issues. Yehia is the creator and

chair of the international Cross-Cloud workshop series. Beyond the cloud,
Yehia works on border-free network architectures in intent-driven systems,
systems of systems, and information centric networks. He also works on ad-
vocating network-awareness which involves measuring networked systems,
evaluating network protocols, and proposing new network management
strategies.

AMIR HUSSAIN Amir Hussain obtained his
BEng (with the highest 1st Class Honours, with
distinction) and PhD (in novel neural network ar-
chitectures and algorithms for real-world applica-
tions), both from the University of Strathclyde in
Glasgow, UK, in 1992 and 1997 respectively. Fol-
lowing postdoctoral and senior academic positions
held at the Universities of West of Scotland (1996-
98), Dundee (1998-2000) and Stirling (2000-18)
respectively, he joined Edinburgh Napier Univer-

sity (UK) in 2018, as founding Director of the Cognitive Big Data and
Cybersecurity (CogBiD) Research Lab, managing over 25 academic and
research staff. He is invited Visiting Professor at leading Universities and
Research Innovation Centres world-wide, including at Taibah Valley, Taibah
University (Madina, Saudi Arabia). Professor Hussain’s research interests
are cross-disciplinary and industry focused, aimed at pioneering brain-
inspired, cognitive Big Data technology for solving complex real-world
problems. He has (co)authored three international patents, over 400 publi-
cations, with nearly 150 journal papers, and over a dozen Books. He has led
major multi-disciplinary research projects, funded by national and European
research councils, local and international charities and industry, and has
supervised more than 30 PhDs to-date. He is founding Editor-in-Chief of
(Springer Nature’s) Cognitive Computation journal and BMC Big Data
Analytics journal. He has been appointed Associate Editor of several other
world-leading journals including, IEEE Transactions on Neural Networks
and Learning Systems, (Elsevier’s) Information Fusion journal, the IEEE
Transactions on Emerging Topics in Computational Intelligence, and the
IEEE Computational Intelligence Magazine. Amongst other distinguished
roles, he is General Chair for IEEE WCCI 2020 (the world’s largest and
top IEEE technical event in Computational Intelligence, comprising IJCNN,
FUZZ-IEEE and IEEE CEC), Vice-Chair of Emergent Technologies Techni-
cal Committee of the IEEE Computational Intelligence Society, and Chapter
Chair of the IEEE UK Ireland, Industry Applications Society Chapter.

ALA-AL-FUQAHA rreceived Ph.D. degree in
Computer Engineering and Net- working from the
University of Missouri-Kansas City, Kansas City,
MO, USA, in 2004. His re- search interests include
the use of machine learning in general and deep
learning in particular in support of the data-driven
and self-driven management of large-scale deploy-
ments of IoT and smart city infrastructure and
services, Wireless Vehicular Networks (VANETs),
cooperation and spectrum access etiquette in cog-

nitive radio networks, and management and planning of software defined
networks (SDN). He is a senior member of the IEEE and an ABET Program
Evaluator (PEV). He serves on editorial boards and technical program
committees of multiple international journals and conferences.


