On the Interplay Between Self-adaptation and
Energy Efficiency

Soyaba Hasan and Yehia Elkhatib
School of Computing Science, University of Glasgow, UK.

Contributing authors: first.lastQglasgow.ac.uk;

Abstract

Self-adaptation is an increasingly popular approach for enabling systems to make
agile and data-driven decisions without human intervention. However, techniques
for measuring the performance of a self-adaptive system and its effects on context
are lacking. In this study, we present a mechanism that enables customizable
and comprehensive evaluation of self-adaptive systems in real time. We apply
our proposal to an example of resource management in a data center setting.
We find that a self-adaptive approach to managing resources is multiple orders
of magnitude better in terms of energy efficiency, especially as the size of the
infrastructure grows, at the expense of slightly lower performance (< 10%).
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1 Introduction

A self-adaptive system can handle changes without external intervention. This topic
has been of great interest for many years, dating back to the notion of autonomic
computing [1]. Self-adaptation is used in various domains such as self-driving vehicles,
smart grids, mobile applications, the Internet of Things, and cloud computing. Self-
adaptive system architectures are predominantly employed for their ability to make
prompt decisions informed by prior experience, reduce room for human error and bias,
and optimize resource utilization.

Despite the great interest in self-adaptive systems, there is a lack of means to
understand their behavior in a real-time and comprehensive manner [2]. Evaluating
the effectiveness of self-adaptive systems is a significant challenge due to their inher-
ent complexity, dynamics, and unpredictable operating environments. In particular,



real-time feedback is essential for intended users and software engineers to leverage
the capabilities of a system and the possibilities of its context, while also addressing
potential limitations.

Despite the availability of runtime measures for self-adaptive systems, their ade-
quacy for the above needs is questionable. Existing methods can collect real-time data
on system behavior, but they are (i) overly complex and challenging to deploy, neces-
sitating significant time and resources; and/or (ii) inadequate to reflect and analyze
the effectiveness or provide actionable insights.

In this study, we devise a mechanism to evaluate in real-time the runtime perfor-
mance of a self-adaptive job dispatching system. This is a widely used application of
self-adaptation to manage servers in cloud data centers. In doing so, we aim to develop
appropriate techniques that could be applied to other self-adaptive systems. More-
over, we investigate the interplay introduced by self-adaptation, specifically in terms
of system performance and energy efficiency.

Our contributions are as follows:

1. We developed a mechanism to evaluate the performance and resource utilization
of a self-adaptive system in real-time.

2. We apply this mechanism by integrating it with the Simdex [3] framework.

3. We investigate the trade-off between system performance and overhead when
self-adaptation is used for resource management.

2 Problem Space

In this section, we describe the problem space and examine related works.

2.1 Background

A self-adaptive system can autonomously adapt in response to a change, such as a
modification in the context in which the application runs or one in the fabric of the
application itself. In either case, adaptation is performed programmatically based on
a feedback mechanism, such as a Monitor, Analyze, Plan, Execute, and Knowledge
(MAPE-K) control loop. Reacting (or sometimes even proacting) in such a program-
matic manner enables applications to act in an agile and data-centric manner, which
makes self-adaptive systems much more reliable, flexible, and efficient.

Self-adaptation has been applied to enable independent systems to evolve the way
in which they interact with other systems, e.g., recommendations in decentralized
overlays [4] and automating system composition [5, 6] in smart home [7] and Internet
of Vehicles [8] environments. Self-adaptive methods have also been employed to make
centralized optimization decisions. A very common example of this is used in data
centers, where decisions such as virtual machine consolidation [9], placement [10], and
auto-scaling [11] can be made using self-adaptive control loops.

2.2 Related Work

The Rainbow framework [12] is commonly used to evaluate software quality. Although
it provides a general strategy for quality evaluation, it does not offer guidance on



applying appropriate methods to reflect system performance. RELAX [13] supports
model-based runtime verification and provides a comprehensive framework for the
development of evaluation tools. It combines statistical techniques to build robust tools
that can adapt to changing environmental conditions. However, this can result in high
computational overhead for large-scale systems and may cause increased resource uti-
lization and downtime. Fusion [14] employs dynamic and static verification techniques
to detect errors in self-adaptive software systems. It generates a complete model of the
system behavior and compares it with the actual performance during runtime. Sim-
ilar systems were devised to gather knowledge of self-adaptive volunteer computing
platforms [15]. However, they rely on the accuracy of static models, which may not
accurately reflect performance, and cannot handle unexpected runtime behavior.

The Dynamico framework [16] utilizes formal methods to verify the behavior of
self-adaptive systems at runtime. However, it relies on static models that may not accu-
rately capture the behavior of the system and incur high computational and resource
costs. SimuLizar [17] used a model-driven approach to analyze performance at design
time but neglected uncertainty at runtime. Zanshin [18] combined machine learning
and knowledge-based techniques to monitor complex systems under fluctuating con-
ditions and optimize system behavior. However, maintenance of Zanshin and similar
frameworks (e.g., [19]) requires specialized expertise. Consequently, they are not well
suited for smaller systems that do not feature advanced levels of self-adaptation.

In summary, as indicated by Gerostathopoulos et al. [2], most evaluation methods
for self-adaptive systems lack validity and verification. Concretely, these methods often
fail to consider the dynamic nature of such systems and lack specific guidance on
applying appropriate evaluation strategies according to system design. Our work aims
to address this gap in the literature.

3 Design

Our aim is to support users by developing an evaluation of self-adaptive systems. In
this section, we introduce our design and use case.

3.1 Requirements

The functional requirements of our design are to:

e enable concurrent tests, i.e., to compare different evaluation scenarios;

e support multiple performance metrics for users to acquire a complete picture of
the system behavior and performance;

e provide a user-friendly interface that simplifies test setup, execution, and analysis;

e handle large-scale data and remain responsive under diverse workloads; and

e store and retrieve measurement logs.

Non-functional requirements are as follows:

e reliability even under heavy workloads, to ensure users can efficiently analyze
results and identify patterns;

e handle and analyze information in real-time with minimal delays;

e handle multiple concurrent experiments and promptly;

e retrieve data effortlessly;



e extensible for the integration of new features and performance metrics; and

e easy to maintain and support with clear documentation and code organization.
Goals that are outside the scope of our system but are included in this manuscript:

e process and analyze large amounts of data to extract insights; and

e generate and customize visualizations.

3.2 Simdex Environment

Before explaining the measurement mechanism, we introduce the environment in which
it operates. Simdex [3] is a tool for simulating self-adaptive job-dispatching systems.
It is designed to replay workload logs and use self-adaptive mechanisms to experiment
with enhancing system performance in response to changing conditions.

We chose Simdex because of its scalability and flexibility as a job-dispatching sys-
tem that supports self-adaptive control loops. Its configurable and extendable features
make it a robust tool to incorporate our evaluation system. Thereupon, users can cus-
tomize the system configurations, manage job requests, optimize resource allocation,
and analyze dynamic settings using our evaluation system. In contrast, other self-
adaptive workload operation tools such as DEECo [20] and RTX [21] are substantially
more complex in terms of integrating custom measurement mechanisms.
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Fig. 1 An overview of the architecture of the Simdex simulation environment.

As illustrated in Figure 1, a user-submitted job is passed on to the dispatcher
module that examines the job and assigns it to an appropriate worker. Each worker
has a single queue and processes jobs in a first-come-first-served order. A worker’s
status can be either ‘active’ or ‘inactive’, which is altered based on workload demand.

If a self-adaptive (SA) strategy is being examined, the dispatcher triggers the
MAPE-K loop self-adaptive strategy to identify the state of the worker nodes, ensuring
that the system can adapt and respond to changes in workload. The self-adaptive
controller then updates the dispatcher with the feedback decision, and the dispatcher
directs jobs to the worker nodes responsible for processing them. This adaptive process
adheres to two specific rules:1) it activates an inactive queue if any queue in the pool
still has more than one job, and 2) when a worker does not have jobs queued, the
system deactivates the idle queue.



In contrast, a non-self-adaptive (NSA) strategy is studied using a fixed number of
active workers, whereby resources are statically allocated to submitted jobs.

3.3 Monitoring Mechanism

Through integration with Simdex, our evaluation system captures real-time perfor-
mance metrics including latency, throughput, average response time, total delay,
resource utilization, and power consumption. These metrics provide the user with a
comprehensive understanding of the behavior and performance of the MAPE-K loop
under study. Our measurement logic is implemented in Python and paired with cus-
tom scripts that use libraries such as pandas and matplotlib to automate analysis
and visualization.

We designed the evaluation process following the principles outlined in the frame-
work of Villegas et al. [22] and identified the metrics (detailed in Section 4.1) to develop
a robust evaluation strategy. Users can customize the evaluation system to suit their
requirements. For example, they can investigate different infrastructure configurations
and scaling behaviors under heavy workloads. Users obtain real-time performance
insights through automatic data visualizations that are made available.

4 Evaluation

We conducted a series of experiments using a range of worker configurations and
workloads. We now describe the evaluation setup and results in detail.

4.1 Metrics

We are interested in assessing the costs and benefits of applying self-adaptive strategies
to optimize resource and energy utilization. Thus, we measured the following variables,
inspired by the catalog built by Da Silva et al. [23]:

e Throughput is the rate at which the system can process jobs. Higher values
indicate better performance.

e Latency refers to the time it takes for a job to be processed by the system. Low
latency is an indication of higher performance and improved user experience.

e Total delay is the total amount of time it takes for a job to be completed, from
the time it was submitted to the system until the time it is finished. It includes
the time spent waiting in queues, processing by workers, and any other delays
that may occur during job execution.

e Average Response time is a measure of system responsiveness. It is equal to
the amount of time taken for a system to respond to a job request.

e Resource utilization, a fundamental metric in job-dispatching systems, refers
to the fraction of available resources that were used to complete a given set of
tasks.

e Power consumption refers to the amount of energy consumed by the system
over a period of time. Reducing this expenditure can result in improved energy
efficiency, which is important particularly in resource-constrained environments.



4.2 Independent and Confounding Variables

Our independent variable in each experiment was the number of jobs, which varied
within the range of 15,000-30,000. We vary the worker configuration between 2 and
14, changing their status from ‘inactive’ and ‘active’ according to the scaling strategy.

4.3 Results

We now describe the findings of our experiments in detail.

4.3.1 Overhead
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Fig. 2 The throughput as the number of jobs served per second (left), and job latency in milliseconds
(right). The plots depict the magnitude of the additional overhead incurred by applying the self-
adaptive resource management strategy. The impact on performance is discernible yet minimal.

We found that SA consistently underperforms when compared to NSA for all job
ranges and worker configuration scenarios. This is manifested in the form of a 2.11%
lower throughput and 10.74% higher latency levels, as depicted in the plots of Figure 2.
The disparity between the two systems becomes more prominent as the number of jobs
increases; specifically, the gap widens for settings of 24,000 jobs and above. This is to
be expected, as self-adaptation adds a layer of complexity that includes introspection
and decision making, which adversely influences system performance.

4.3.2 User-perceived Responsiveness

We make several observations from the plots in Figure 3. First, the SA variant of the
system is as responsive as the NSA cognate for low job numbers. Second, SA becomes
decreasingly responsive beyond 20,000 jobs. Third, the disparity between SA and NSA
rapidly worsens with more jobs, as the former features an exponential growth in delay
and response times, while the latter follows a linear trend with a low slope. Finally, the
disparity worsens as the size of the infrastructure (i.e., number of workers) increases.
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Fig. 3 The total delay (left) and response time (right) for both strategies. These results show that
a self-adaptive strategy is feasible, but only to a point where an increased number of jobs and/or
workers bring about exponentially degrading responsiveness.
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Fig. 4 The levels of resource utilization (left) refers to the ratio of the total uptime to the resources
used to process the jobs; note the logarithmic scale. The corresponding power consumption (right)
is given in Watt-hours. Inspecting these findings, we identify the benefits gained by adopting a self-
adaptive management strategy: it allows much more efficient utilization of available resources as the
infrastructure expands, and it minimizes energy consumption owing to the proactive and dynamic
management of running workers.

4.3.3 Optimization

The utilization levels of NSA were comparatively higher than those of SA, both in
terms of making efficient use of the available computational resources and the amount
of energy consumed. With self-adaptation, resource utilization decreases by 84.35%
with an increasing number of workers in the 15,000-30,000 job range. In Figure 4,
the box plots for SA show a clear trend of decreasing resource utilization with an
increasing number of workers, whereas the box plots for NSA are relatively constant.

Furthermore, the power consumption of SA is relatively consistent across all job
ranges and worker configurations. Overall, this level is 86.84% that of NSA. In contrast,
NSA exhibits a noticeable rise in power consumption as the number of jobs and workers
increases, primarily because idle workers consume energy unnecessarily. This suggests
that SA can adjust its resource allocation to optimize utilization and improve efficiency,



while NSA cannot do so. This is evident in unequal job allocation, wherein some
workers are overwhelmed while others are underutilized. This results in inadequate
resource utilization and increased power consumption.

5 Discussion and Concluding Remarks

The findings presented here represent a real-world manifestation of an interesting
trade-off when it comes to employing self-adaptive approaches, which is at the core of
this work: performance versus resource utilization.

In our experiments, we demonstrated how a self-adaptive resource management
strategy allows the system to process tasks efficiently using only the necessary num-
ber of workers at any given time. This further supports the claim that self-adaptive
resource management offers a significant advantage over non-adaptive alternatives.
However, such improvements come at the cost of reduced application performance, as
evidenced by throughput and latency results. These compromises must be considered
when deciding whether a self-adaptive strategy should be employed in a given context.
For example, in contexts where there is only a small infrastructure of workers or where
real-time responsiveness is of high importance, using a self-adaptive strategy might be
excessive and harm the quality of experience, thus being an inappropriate approach.
However, a self-adaptive strategy would be an efficient and cost-effective solution for
resource allocation in dynamic environments or those with a large optimization space,
that is, where a manual/static scheduling strategy would need to consider a large
number of factors.

Our future work will focus on the application of this approach to more dynamic
environments, namely, the scheduling of data processing events in edge infrastructures.
Such infrastructures are liable to sudden and dramatic changes; hence, agile and data-
driven decision-making would potentially be of great benefit.
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