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Abstract—Self-adaptation is increasingly driven by machine-
learning methods. We argue that the ultimate challenge for self-
adaptation currently is to retain the human in the loop just
enough to ensure sound evolution of automated self-adaptation.

Index Terms—self-adaptation, self-adaptive systems, au-
tonomous systems, machine learning, deep learning

I. INTRODUCTION

A Self-Adaptive System (SAS) is one that can work around
changes on its own. A change could either be a modification
in the context that the application runs in, or one in the fabric
of the application itself. Some changes might be anticipated
by the application designer, such as variations in input data or
network connectivity. Other changes are unanticipated, such
as unexpected user input or a complete failure of supporting
microservices. Handling such unanticipated changes is a big
challenge, but not the ultimate one for the self-adaptation com-
munity. The focus on accelerating system autonomy through
the use of machine learning (ML) approaches may undermine
the consideration of qualitative aspects (e.g., ethics, safety, and
values) in the adaptation loop. Those qualitative aspects need
human involvement for satisfying adaptation decisions.

Key Point 1. We contend that the ultimate challenge for
self-adaptation is in controlling automated self-adaptation by
involving human users.

II. LEARNING TO ADAPT

There are different approaches to self-adaptation. Tradition-
ally, the application designer defines the adaptation space, i.e.,
the range of possible options of adaptation. They also analyze
it prior to deployment so that adaptation during runtime
would take place using deterministic means such as finite-state
machines (e.g., [1], [2]). Recently, automation through ML
methods has been introduced as an alternative to either analyze
the adaptation space (e.g., [3], [4]), identify the adaptation
decision to take (e.g., [5]), or both (e.g., [6]).

In Table I, we present a coarse categorization of determin-
istic and ML-based adaptation approaches. Research efforts
to date have mostly made use of parametric adaptation (i.e.,
the first row in the table); cf. [7]. Based on recent efforts in
the literature, we expect: (i) future efforts to cover the other
categories, where there is plenty of room for innovation; and
(ii) the last category to eventually become the most popular.

Table I
CATEGORIZES OF ADAPTATION BASED ON WHEN ADAPTATION SPACE (AS)

AND DECISION (D) ARE KNOWN BY THE SOFTWARE, WHERE D ⊆ AS.

Design time Run time Adaptation approach
AS & D – Rule-based automata, Supervised learning

AS D Semi-supervised / Unsupervised learning
– AS & D Reinforcement learning, Neural networks

Naturally, automated adaptation is pushing to take the
human out of the loop, and is indeed successful in doing so; cf.
Rogério de Lemos talk at SEAMS 2020 [8]. However, it has
introduced a new interaction model between the knowledge
held by the human and that acquired by the machine. This
issue has been recognized in other fields (e.g., computer
vision [9], web search [10]) as the automation paradox, which
states that with more automation human intervention becomes
increasingly critical.

Our concern in this paper is beyond the preoccupation
of how to adapt. Instead, we are interested in exploring
what would happen as we accelerate towards automation and
significantly reduced human involvement as a consequence.

Key Point 2. We have been focusing too much on adaptation
whilst eliminating the post-deployment human input. We argue
that the human factor needs to be retained in some form for
gaining comprehension and critical steering.

III. KNOWLEDGE INTERACTION SURFACES

In light of this, we now explore and rationalize the points
at which human intervention needs to be retained. We identify
these within 2 main surfaces where knowledge is exchanged
between human and machine.

A. Human-to-machine surface

The first interaction surface is the one that transfers know-
ledge from the human elements of a system into its software
fabric. We have had numerous works on how to translate
human knowledge into rule- / heuristic-based adaptation mech-
anisms, but we are only in the dawn of how to capture human
knowledge into ML models. This is manifested in the input
from the following human stakeholders:
• Developers: There are a plethora of software libraries

to operate ML models. However, there are not enough
means to formalize the interface between such libraries and
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software tools that developers commonly use. For example,
scikit-learn and TensorFlow are widely used at the
information level to provide enhanced operation through
parametric changes or deal with a large scale of input
data. However, they are seldom used to change the inner
structure of an application. For this, better tools are needed
to integrate ML libraries with software design methods.

• Researchers: Very few practices around developing ML-
based adaptation are shared by those working in this area
of research [7], [11], [12] especially in terms of assessing
data quality and reproducibly inducing model parameters.

• Domain experts: During this time of great growth in ML-
based adaptation, it is vital to not exclude those with
the most knowledge in any given application domain.
Software engineering processes are notoriously internally
dominated [13], hence the trend towards user- [14] and
stakeholder-centered [15] design practices. There is strong
evidence of how effective this could be, but efforts have so
far been around end-user interaction not system architecture.

Key Point 3. The interface between human knowledge (in
collective and specialized forms) and automated system adap-
tation is not sufficiently fluid. There is room to innovate by
developing software tools and rigorous community practices.

B. Machine-to-human surface

Once adaptation is automated, human intervention is still
needed for different reasons [16]. Model coefficients could of
course be tuned in an automated fashion, but other parameters
are considered outside the remit of the synthetic knowledge of
a SAS. These include, but are not limited to, the following:
• Early detection: ML methods in general still suffer from

fundamental problems such as overfitting and lack of
transparency. This has been observed generally, but also
in ML-based adaptation research [7], [12], [17]. Despite
the various mitigation proposals (e.g., regularization, cross-
validation, etc.), humans are still quicker and more effective
in identifying and resolving such issues [18], [19].

• Data quality: For example “the road markings are too
patchy” for a self-driving vehicle in, say, a rural part of
a low-income country, or “the workforce is on strike” for a
factory assembly line controller.

• The unmeasurables: In designing ML-based systems, we
tend to gravitate towards what is readily measurable (pri-
marily performance and reliability). However, some aspects
are concretely human and cannot (yet) be reasoned about
using software alone; e.g., ethics, equality, and inclusivity.

• Significant decision: Some decisions still need to be made
by a human; such as “the patient is pronounced dead” or
“the enemy has attacked”. Although a SAS can provide
significantly enriching information to feed such decisions,
a human is still better at making such decisions that the
current generation of ML-based SASs.

• Meta reflection: Human perspective is important for reg-
ularly checking if the adaptation goals are still valid at a
high level and if the models reflect them accurately. We are

not expecting systems to always be explainable as this is a
long-term goal, but they should at least be presentable in
modifiable forms to the developer, maintainer, and end-user.

Key Point 4. Human intervention is still needed to guide the
evolution of adaptation at certain key points.

IV. CONCLUSION

In summary, we believe that the ultimate challenge for
self-adaptation is not in handling unanticipated changes but
in controlling automated self-adaptation by involving human
users. The knowledge exchange processes we discuss here
highlight why and what interfaces are needed, and who for. In
turn, the interfaces will answer the how, presenting a whole
host of great research opportunities. Several other questions
remain: when and where does it make sense to solicit human
input; how much depending on expertise, mental state, etc.
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