An Ontological Architecture for Principled and Automated
System of Systems Composition

Abdessalam Elhabbash, Vatsala Nundloll,

Yehia Elkhatib, Gordon S. Blair
a.elhabbash@lancaster.ac.uk
SCC, Lancaster University, UK

ABSTRACT

A distributed system’s functionality must continuously evolve, es-
pecially when environmental context changes. Such required evo-
lution imposes unbearable complexity on system development. An
alternative is to make systems able to self-adapt by opportunistically
composing at runtime to generate systems of systems (SoSs) that
offer value-added functionality. The success of such an approach
calls for abstracting the heterogeneity of systems and enabling
the programmatic construction of SoSs with minimal developer
intervention. We propose a general ontology-based approach to
describe distributed systems, seeking to achieve abstraction and
enable runtime reasoning between systems. We also propose an ar-
chitecture for systems that utilize such ontologies to enable systems
to discover and ‘understand’ each other, and potentially compose,
all at runtime. We detail features of the ontology and the archi-
tecture through two contrasting case studies: one on controlling
multiple systems in smart home environment, and another on the
management of dynamic computing clusters. We also quantitatively
evaluate the scalability and validity of our approach through exper-
iments and simulations. Our approach enables system developers
to focus on high-level SoS composition without being constrained
by deployment-specific implementation details.

CCS CONCEPTS

« Computer systems organization — Architectures; - Com-
puter systems organization Self-organizing autonomic com-
puting;

KEYWORDS

self-adaptation; context awareness; ontology; runtime composition;
system of systems

ACM Reference Format:

Abdessalam Elhabbash, Vatsala Nundloll, Yehia Elkhatib, Gordon S. Blair
and Vicent Sanz Marco. 2020. An Ontological Architecture for Principled
and Automated System of Systems Composition. In . ACM, New York, NY,
USA, 11 pages. https://doi.org/0000001.0000001

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

© 2020 Association for Computing Machinery.

https://doi.org/0000001.0000001

Vicent Sanz Marco
FCRL, Osaka University, Japan

1 INTRODUCTION

Computing systems have evolved from the basic picture of con-
nected PCs and mobile devices to the complicated picture of the
inter-connected collections of heterogeneous systems. These sys-
tems include Internet of Things (IoT), clouds and micro-clouds,
ad-hoc networks (MANETS, VANETs, FANETs), smart grids, among
others. Each of these systems contains a set of heterogeneous com-
ponents that implement diverse functions communicating using
different protocols. Furthermore, these various systems often need
to interact and collaborate to achieve their goals. For example, iso-
lated rescue teams need to opportunistically compose and access
each others services (e.g., data look-up) to exchange information;
deployed environmental IoT systems process their data on a micro-
cloud in their vicinity and offload certain processing to the cloud
when needed; etc. In this sense, larger systems are constructed
through the interaction of smaller ones, a practice known as System
of Systems (SoS) composition or construction [21].

The inherent characteristics of SoSs make the development of
these systems a challenging task [28]. By definition, a SoS is a com-
plex system built from a (potentially large) number of sub-systems
that in turn are made up of different components, and so on. More-
over, SoSs are typically deployed in environments where context
changes. This is where the need arises to veer from a strict work-
flow path that has been defined at design time, and form a more
complex system in order to maintain the intended abstract behavior
or to be able to provide new behavior that is only possible through
uniting with other systems in the new context. Such examples in-
clude disaster recovery, adaptive IoT applications, volunteer and
crowd computing, military defense operations, and other forms
of cyberphysical systems. Furthermore, the development of SoS is
dynamic in nature. This is grounded in the knowledge that systems
are persistent and long-living [30]. As such, their objectives and
functionalities evolve over time as they are constantly added, mod-
ified, or removed at different time scales. This might also predicate
changes in architectural and functional dependencies.

Despite the challenges posed by the above characteristics, cur-
rent approaches of constructing SoSs assume that developers have
in-depth knowledge of the internal structure of each system and its
components [24]. Taking into account the above challenges and the
characteristics of SoSs, it might be obvious that such approaches
are deficient. We argue that the construction of SoS needs to be
autonomous and dynamic. Systematic approaches for internal and
context awareness are required to attain this goal. All systems
should be able to accumulate knowledge about their own structure
and behavior. Then, systems should exchange and be able to under-
stand such knowledge at runtime so that they can opportunistically
compose and form complex SoSs.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

In order to achieve this objective, there is a need for semantics
to comprehensively describe the system structure, capturing the
information required for dynamically composing systems such as
those relating to communication (e.g., unique identifiers), service
discovery, quality of service, physical properties (e.g., power level
and location), environmental properties, etc. We refer to this com-
prehensive structure description of a system as a holon [6]. A holon
is constantly modified to reflect the system structure and to contain
any new or modified information, and then published to aid discov-
ery and reasoning about composition. When holons compose, they
form a new holon that represents the SoS. This newly constructed
holon will now have its own specification, which is published so
that the system can further compose with other SoSs and so on.

The above holon ecosystem requires means of utilizing system
(or holon) description in order to reason about SoS construction at
runtime in a programmatic and adaptive manner. One solution is to
adopt ontologies to specify the holons. Ontologies are engineering
tools for formal and explicit specification of a shared conceptualiza-
tion [10]. They provide vocabularies that can be used to represent
knowledge that can be utilized programmatically to understand
the corresponding contents, mainly system parameters, offered
services, and requirements. These are expressed through standard
concepts, allowing other holons to understand the described holon
and, accordingly, make decisions about how to interact with it.

In [6] we proposed the vision towards the construction of dis-
tributed SoSs using holons, then in [29] we defined the basic con-
ceptual structure with particular focus on IoT deployments. In this
paper we build on these works by putting forward an architecture
for realizing the holons and how they compose. The paper inves-
tigates how ontologies can be used to capture the holons’ space
to enable autonomous SoS construction. Once specified, the holon
description can be published through broadcasting to other sys-
tems. The description is compiled by receiving systems in order to
understand the functionality of the sending system, reason about
it, and determine how to communicate with it.

Briefly, the main contributions of this paper are as follows:

o A framework for specification, compilation, dissemination, and
modification of the holons (§4-§6)

e A qualitative evaluation of the proposed approach using two
different case studies that motivate the need for dynamic SoSs
construction and configuration (§7-8§9).

e A quantitative evaluation of the scalability and validity of the
proposed approach (§8,§10).

2 PROBLEM SPACE AND RELATED WORK

The SoS concept has featured in the literature for over two decades [21].

However, composing SoS from already existing systems at runtime
is still an area that requires more research.

The significant body of work looming here is the Service Ori-
ented Architecture (SOA) legacy. SOA allows a system to expose its
functionalities as services, and then SOA composition technologies
can be applied to form a SoS; cf. [3, 5, 42]. We argue that such
SOA-based automation is not suitable for the following three main
reasons. First, SOA does not readily provide concepts that capture
physical system properties such as the context they are operating in.

A. Elhabbash et al.

The service composition supported by SOA is mainly functionality-
based composition. However, SoS composition is wider than this, as
it also requires knowledge about system properties and context to
reason about the composition. Second, services in SOA are assumed
to be published in a repository that an orchestrator can consult to
select services from. This assumption is not valid in the general SoS
context which is fully distributed. Third, SOA-based SoS developers
are expected to know a lot about individual systems, or invest sig-
nificant time learning them. Fig. 1 illustrates the tasks performed
by the vendors, developers, and the system for SOS composition.
Developers are required to acquire knowledge about the APIs and
properties of the elementary systems they need to compose. Then,
they need to leverage that knowledge to design and implement the
SoS, and finally deploy it. This requires the developer to focus on
the elementary systems instead of the whole SoS.

Vendor Developer System
[_API Specification]i [APl Understanding | ! | So0S Running]
S0S Design
Glassical SoS Composition
Approach Application Deployment
:ﬂfﬂﬂs " | Holon Specification | Abstract Workflow | Holon & Service
ipporoac) Specification Discovery
Holon Deployment | SoS Composition |
| Workflow Deployment |

Figure 1: Comparing the responsibilities in current SoS com-
position approaches and in the proposed one.

There has also been other non-SOA efforts. These include facili-
tating discovery and composition using cellular infrastructure [11]
and network middleboxes [7]. Such approaches, though, require
specific infrastructure deployment for mediation and, more impor-
tantly, still assume too much on the part of the developer in terms of
reasoning about discovered systems. This final task is crucially dif-
ficult without means of identifying these systems’ modus operandi.
Some works have chosen to do this at design time (e.g., [23]) through
analyzing qualitative mission objectives of systems, but these are
hard to express in a programmatic way that enables automated
reasoning at runtime.

The closest work to ours also defines the notion of a holon [18,
32], but is focused on goal-driven service composition without
means of allowing holons to reason and self-compose.

Agent-based ontological approaches have been proposed, e.g., [1,
2, 12, 34]. However, these works are less systematic than our holon
ontology. Moreover, they also do not indicate how composition is
reasoned about in a heterogeneous environment.

3 RESEARCH STRATEGY

Based on the above, our ultimate goal is to shift the developers’
focus from learning the internals of elementary systems to thinking
at the level of the SoS. As shown in Fig. 1, holons allow devel-
opers to focus on defining high-level workflows of the SoS. The
elementary systems need to autonomously discover each other
and compose to serve the requests. The achievement of this goal
requires (1) a comprehensive description of the atomic systems
(their services, properties, and context) that enable autonomous
composition between systems; and (2) an architecture the exploits
such descriptions and supports SoS composition and adaptation.

An Ontological Architecture for Principled and Automated System of Systems Composition

Our research seeks to answer the following three questions.

RQ1: What are the right abstractions to represent different sys-
tems within a SoS framework?

RQ2: What systems principles and techniques are then required
to support SoS composition?

RQ3: What extensions are required to support SoS composition
and adaptation in heterogeneous, large-scale environments?

Our work uses an ontological approach towards real-time rea-
soning around the composition of systems of systems. This is made
possible by an architecture we have built for comprehending what
an SoS is made up of, if composition is required, and how such com-
position would take place. Moreover, the architecture automatically
actions the low-level mechanics that enable the composition. To
validate the feasibility and utility of our architecture, we adopt a
hybrid experimental evaluation strategy that comprises of quali-
tative assessment of controlled testbed experiments (specifically
in the domains of IoT and infrastructure management) as well as
quantitative assessment of real open-source systems.

4 THE HOLONIC LIFECYCLE

A holon starts as an atomic one then might evolve to being com-
posite. An atomic holon represents a single system that provides
one or more functionalities. A composite holon includes functionali-
ties provided by a number of systems interacting with each other
either directly or through others. In order for holons to compose,
atomic holons need to be comprehensively specified by the system
developer. After that, the system will be dynamically constructed
as the holons iterate in their lifecycle. The four stages of a holon’s
lifecycle (Fig. 2) are outlined below.

Design Time Run Time

(Section 5) (Section 6) l
(Specification) -_—) (Disseminatiun) l

Figure 2: A holon’s lifecycle

Specification. A system developer uses an ontology to create
the holon from a number of elementary descriptions. This includes
a holon identifier, the physical properties of the system (e.g., power
level), quality of service (e.g., availability and reliability), environ-
mental properties (e.g., location), policies (e.g., routing protocol),
services (e.g., sensing temperature), among others. All these are
specified using our ontological model, described in §5.

Dissemination. A created holon disseminates its specification
so it can be discovered. Different dissemination strategies can be
adopted: push, pull, and lookup. In the push strategy, the holon
periodically broadcasts its latest description. In contrast, a pull
strategy uses heartbeat signals; i.e., the holon periodically sends
‘Hello’ messages to establish interaction with other systems, which
could then request the full holon description. This strategy reduces
overhead, so is useful in energy-constrained environments. In the
lookup strategy, the holon registers its description with a registry
that can be consulted by other systems to obtain the holon. This
strategy is to be used when infrastructure assistance is guaranteed.
We adopt the push strategy for the scope of this paper.

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

Compilation. This aims at understanding other holons and
their functionalities. This is achieved by parsing received descrip-
tions (in the form of XML representations), and identifying the
functionalities contained within, and how they interact with that of
the received holon. Compiling these functionalities into one holon
representing a new SoS comprising of the interacting holons.

Modification. Holons can change at runtime due to a change in
the physical system (e.g., update of a service) or due to a structural
change (e.g., composition to a new holon). In either case, the holon
description will be modified to reflect the change. Upon obtaining
a modified version of a holon, the receiving holon will recompile
its own holon and disseminate it. This will convey the changes to
the whole SoS.

5 THE ONTOLOGICAL MODEL
5.1 Background

For a holon to be able to compose with another holon at runtime, it
needs to advertise its own definition in a systematic way that can
be easily understood by the receiving holon. For this, the definition
needs to embody the different concepts surrounding the holon,
triggering the need for an appropriate structure to represent it. In
this respect, an ontology seems to be the best technique to capture
the definition and behavior of a holon. An ontology is a formal and
explicit specification of a shared conceptualization. It models some
aspect of the world (called a domain), and provides a simplified
view of certain phenomena in this domain. The description of the
domain is based on a vocabulary that explicitly defines its concepts,
properties, relations, functions, and constraints.

For our purposes, the ontology will be used by a holon to ad-
vertise its services, the types of input parameters required for said
services, and the types of outputs they produce, if any. Furthermore,
the ontology is used to identify the physical properties of the holon
such as the power level (infinite/finite), location, operating system,
mobility, etc.

Whilst an entirely new ontology can be developed from scratch,
we deemed it more constructive to look at existing ontologies and
extend suitable ones, i.e., the ones that contain the semantics re-
quired to describe holons, if and where necessary. In order to iden-
tify the most appropriate ontology to represent holons, we looked at
different sensor and observation ontologies. We started with those
surveyed by the W3C Semantic Sensor Network (SSN) Incubator
Group [39]!, and continued with our own study of others. Table 1
shows the main ontologies that we reviewed.

Based on this investigation, the ontologies that we found suit-
able for extension are (in chronological order): CODAMOS, Swamo,
A3ME, and Ontonym. We concluded to use CoODAMOS [31] due
to its inherent predisposition for modification, making it easily
extensible for defining context-aware computing infrastructures
varying from small embedded devices to high-end service platforms.
Furthermore, CODAMOS’s concepts closely match the kind of def-
initions we want to create for a holon. For example, the Service
concept - i.e., having a service profile - can be used to define the

!t should be noted that we did not specifically opt for the SSN ontology — despite it
being a complete ontology about sensors and their measurements - as our focus is not
limited to a sensor-based system, but is rather more on capturing the abstract nature
of a holon and on how to reason over whether a holon is atomic or composite.

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

Table 1: Survey of existing sensor-based ontologies

Ontology = Comments on Suitability Suitable?
CoDAMOS Easily extended to accommodate new 4
definitions of devices and systems
OntoSensor The organization of concepts and properties X
is not transferable to a different context
MMI Not well tested in other contexts X
SensorML Basic and without concept documentation X
O&M Expressive representations of time and X
space are not available
Swamo Describes autonomous agents for v
system-wide resource sharing, distributed
decision-making and autonomic operations
SDO Not available for use X
A3ME Can be easily extended v
Ontonym A set of ontologies for representing core v
pervasive computing concepts
Sensei Some properties are not completely defined X

types of services provided or required by a holon. Note, however,
that this does not imply that the other shortlisted ontologies cannot
be used. Indeed, A3ME [13] (to pick just one other ontology) could
be merged with CoODAMOS to describe further concepts related to
holonic design; for instance, the APIPublic CoDAMOS concept can
be further described as GlobalAddress, LocalAddress, or OtherAddress
using the Address concept of A3ME.

For this paper, we use CoODAMOS as the basis ontology with the
aim of answering our research questions (§3), and in particular RQ1:
is it possible to define something as abstract as a holon using an
ontology, which is inherently prescriptive and unambiguous?

5.2 Extensions

Among its various concepts, there are four basic CoDAMOS con-
cepts that stand out in terms of designing holons: User, Environment,
Platform, and Service. The User concept has a profile, a role, and
a task. The task can have activities and/or uses a service. The En-
vironment concept defines a location (relative or absolute), a time,
and an environmental condition (e.g., temperature, pressure, hu-
midity, lighting, noise). The Platform concept has an Environment
and can provide a Service (used by User). The Service concept has a
profile, a model, and grounding. A Software concept links to Service
through a property called providesService, and can be differentiated
as middleware, VM, or OS. The Task concept makes use of a Service.
Other resources such as memory, network, power or storage can
also be modeled accordingly.

Fig. 3 summarizes how we extended CODAMOS to accommodate
the requirements of a holon. The Profile is extended to show profile
preferences for routing messages in a system such as Ordering,
Reliability and Delay. A new concept Node is added to capture the
types of nodes encountered in a system: physical and abstract. This
allows systems to be organized in a hierarchical way with physical
systems at the very bottom of the hierarchy as leaf holons, and
abstract systems as their parents, and so on till a root holon at
the very top. All of these are added as concepts under the Holon
concept. Furthermore, Service Properties has been extended to
accommodate routing properties such as Delay, Reliability and
Ordering. For implementing these extensions we used Protégé [25],
an open-source ontology editor.

A. Elhabbash et al.

owlThing

Profile Service_Properties.
isa v

is-a

Preference_Profie Abstract Node) (Holon) (Physical. Nod®) - (Routing_properties

= isa -
e Tiea jsa is3(isa |isa \sa fisa isa oa 52

Ordering_Profile Delay_Profile Reliability_Profile) Root_Holon) (:Parent_Holon) (Leaf_Holon) - (:Reliability) (_:Delay) (:Ordering)

/ isa isa isa
. . isa
isa isa - o3

Fir0) COuLoLOmEr (Fiie) oG <Aoo OnG (Best V) Exacy_0ns CALLeso OnGa
Figure 3: Our extensions to the CoDAMOS ontology, en-
abling the representation of holons to form SoSs

5.3 Application

For demonstration, we show how two holons can be composed
using their underlying description. As such, the starting point is
where each holon defines itself using the ontology: its properties,
the services it provides, and the parameters being used. These
descriptions are broadcasted by each respective holon.

On receiving such broadcast, holons will compose with each
other if they meet the criteria for composition, for instance: if
a holon Hj is requiring a service X, and it encounters another
holon Hj that is providing such service, then H; can initiate the
composition procedure with Hz. Once H; gets composed with Ha, it
needs to update its definition to reflect its new state as a composed
holon, i.e., a SoS, that is now providing service X. This update is
carried out at runtime through creating an instance of the holon
concept (called, say, H3) to represent the new holon that has been
encountered, and it also holds the definition of Hj in this case.

Moreover, the ontology retains the ability to infer new knowl-
edge based on the domain information provided. For example, there
is a defined concept called composedHolon that is used to identify
whether a holon is a simple or composed one. In this context, given
that a holon has been composed to another holon, the ontology
reasoner can determine whether this holon is a composed one. If
H, gets out of reach, then the ontology of the composed H; will be
updated to accommodate this change, simply by removing the H3
instance and clearing composedHolon.

6 SOS CONSTRUCTION MODEL

This section provides the mechanics of using holonic ontologies in
order to reason about their composition to form a SoS at runtime.
At a high level, our approach is first to transform a holon to be
represented as weighted tree that reflects its interaction with other
holons. Then, upon receiving a request for a service, the tree is
used to find through which holon the service can be accessed. This
section also presents the architecture that realizes the approach.

6.1 Composition model

Each holon needs to build a model that represents its awareness
about the existence of other holons (i.e., systems) and their ser-
vices. This model (called the composition model) is used to interact
(compose) with the other systems by accessing their services. The
composition model of a holon is represented as a weighted tree
T rooted by the holon and with a depth of three. The children
of the root are the holons that are directly reachable by the root
holon. The leaf nodes represent the detected functionalities that
are provided by or accessed through the children holons. Each leaf
node i is assigned a weight that represents the cost of accessing

An Ontological Architecture for Principled and Automated System of Systems Composition

the corresponding functionality F;. For simplicity, in this paper
we define the cost as the distance between the root and the holon
providing F; in terms of the number of intermediate holons. Other
cost functions such as delay, reliability or aggregated Quality of
Service (QoS) can also be used. It is worth mentioning that a holon
is not aware where a functionality F; is located. However, the holon
is aware of the cost of accessing F; and through which holon can F;
be accessed. Fig. 4 shows an example of a holon connected to three
other holons in its neighborhood. Functionality F, can be reached
through both H; and Hjy, but it is less costly to access through Hj.

Figure 4: Composition/interaction modeling example.

The composition model is frequently updated during the lifecycle
of the holon. Updates include adding/removing new holon branches,
and updating the services of current ones. Adding and updating
are performed upon receiving holon ontologies, while removing
is carried out if the ontology is not received during a certain time
period (we set this to be three times the dissemination period).

6.2 Reasoning architecture

We assume that a system developer will create the atomic holon
using the ontology described in §5. Once deployed, the holon lives
in the described lifecycle (§4). Fig. 5 offers a high level view of
the architecture that realizes SoS construction using the holonic
approach. The architecture consists of five main components.

OWL parser

N Holon
OWL +field: type

«method(type): type

m@\
D|ssem|nator OWL Renderer

Figure 5: System architecture

Compiler

/%\,}wm

Serve r/Mediator request

response

OWL parser. This component receives ontologies from sur-
rounding holons and parses them, creating objects that represent
each holon and its functionalities. We adopt OWLAPI V5.1 [15] to
parse ontologies and extract the knowledge therein.

Fig. 6 displays an overview of the mapping of ontology elements
to a holon object. For each Class element, a Java class is created to
represent it. For example, a Java class Service represents the ontol-
ogy Service concept, Profile represents the Profile concept, and
so on. The Instance elements of the ontology are instances of the
Class elements. The instances are linked together using DataType
or Object properties. Such structure is mapped as attribute objects
of the Holon object. For example, assume the ontology contains an
element service; that is an element of class Service. This instance

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

Holon object

)
-[Attribute objects]
%[Referen;:sjsetcfisattnbute]

Figure 6: The relationship between main ontology elements
and those of a holon.

-[Attributes values]

can be linked to the Holon concept using an object property ele-
ment called hasService. In the Java Holon class, this is mapped by
having an attribute called service_i of type Service in the Holon
class. Finally, in the ontology Value elements represent some of the
parameters values that are mapped as attribute values of the Holon
Java objects. An example is the value ‘25°C’ of the Temperature ele-
ment which is assigned to the temperature attribute in the Holon
Java object. The OWL parser then passes the created Holon object
to the Compiler.

Compiler. This component formulates a notional model of the
developing SoS as seen from the perspective of the receiving holon.
This model takes the form of a tree data structure with the receiv-
ing holon at the root, with each branch representing a neighboring
holon and the functionalities provided either natively by it or in-
directly through it. To construct or modify the tree, the Compiler
creates a tree branch that represents the received holon object and
its provided functionalists as children. The cost of each functional-
ity is also updated as this stage. After that, the newly formed branch
is attached to the root holon as a child. The Compiler then passes
the constructed tree to the Server/Mediator and OWLRenderer.

Server/Mediator. This component receives requests for the
functionalities provided by the system and serves them. It uses
the constructed holon tree to specify whether the request can be
satisfied by the system or needs to be directed to another holon.
If the requested functionality is provided by the holon, then the
system processes the request and responds to the requester. Other-
wise, the system acts as a mediator and redirects the request to the
holon that provides the request, waits for the response, and passes
back the response to the requester.

OWLRenderer. What this component fundamentally does is
represent the knowledge of a developing SoS based on interaction
with new holons. The OWLRenderer reads the holon tree data
structure from the Compiler and converts each node and the corre-
sponding attributes into the appropriate XML tags that construct
a valid ontology (i.e., an inverse mapping of Fig. 6). To render the
ontology into an OWL description, we also use OWLAPL

Disseminator. Upon receiving an OWL description represent-
ing the holon and the compositions with other holons, the Dissemi-
nator publishes this description by broadcasting it — as is the policy
in the Push strategy (see §4).

7 CASE STUDY I: AUTONOMIC SMART HOME

In this case study, we focus on the ontology exchange between
holons to realize SoS logic. The experimental context here is that
of a smart home application that emerges as a SoS constituting a
number of disparate IoT deployments.

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

7.1 Background and challenges

Smart Home is an application of IoT that promises the ability for
users to intelligently manage their homes with minimum interven-
tion. Devices are utilized to monitor home conditions (e.g., temper-
ature, humidity) and the state of appliances (e.g., battery levels) to
enable smart management of energy consumption, security, and
various house keeping functions. However, it is no longer realistic
to assume a defined and small scale of smart home deployments. As
smart home systems are increasing in popularity, the dimensional-
ity of IoT devices used is increasing as new devices are constantly
offered in the market and with increased capabilities [40]. Thus,
their deployment environments are continually evolving [38], mak-
ing self-adaptation a necessity [16, 24].

Furthermore, homogeneity cannot be taken for granted [41]. The
fact that these devices are developed by various vendors means that
heterogeneous technologies and APIs exist. Smart home application
developers need to learn these various technologies and APIs in
order to develop IoT applications that manage the different aspects
of a smart home in a coherent manner.

Finally, IoT applications generally limit consumers to the prede-
termined deployment environments they were designed for [27].
Consequently, they are brittle and susceptible to suboptimal op-
eration when their context changes, e.g., due to a backhaul net-
work fault or a server outage. Under such conditions, centralized
(mainly cloud-based) approaches fall short especially in network-
constrained conditions [8]. Instead, IoT applications often need a
way to be able to adapt at the edge without preparation or central
coordination.

7.2 Overview of our approach

In this case study, we illustrate how the adoption of our ontology-
based approach helps to significantly mitigate the mentioned com-
plexity. Building on the approach of integrating web services with
the IoT technology to enable remote access of data gathered by the
IoT devices (e.g., [33]), we argue that our approach enables the auto-
matic discovery of services that are required for an adaptive smart
home management application. As in the web service composition
case, application developers need to specify the abstract workflow
of the application execution where each task in the workflow rep-
resents an abstract service. Then, concrete implementations of the
abstract services are selected for the workflow realization.

We consider each device as a holon that is described using the
ontology (probably by the vendor). The management application
is also considered as a holon that receives other holon ontologies,
parses and compiles them, and then uses their services. Application
developers specify the abstract workflow of the smart home man-
agement application. Then, the Server/Mediator component selects
the concrete services that implement the abstract services of the
workflow. A concrete workflow (the application) is passed to an
execution unit that executes the application and passes the results
to the smart home actuators. Fig. 7 illustrates the above steps.

7.3 Experimental setup

We developed a proof of concept prototype focused on smart home
temperature management. We assume a smart home that has the

A. Elhabbash et al.

e OWL parser Compiler [ServerlMedia(or\
¥ N Holon - [N N |
e A A= =
“ -+ methodype): ype l l 1.
1. 23 abstract
workflow
o m Concrete]
Dissiminator OWL Renderer g [workllow
A 3. [Execution
\ 41~ Unit
Figure 7: Smart Home Controller

Property assettions: heater [T =))} Property assertions: fridge NE0E

Object property assertions . erty asse
mm providesService replaceFilter
mmprovidesService getHeaterStatus = providesService foodLevellow

== providesService switchHeaterOn [[= W %

mmprovidesService switchHeaterOff

Property assertions: thermometer NIEICIEN object property assertion
== provid,

vice cl

mm providesService openWindow

mmprovidesService getTemprature

Figure 8: Object properties of the device ontologies.

getTemprature

False ‘Q»:/ Truel

False & P>~ Truel switchHeaterOff
switchHeaterOn switchHeaterOff openWindows

| closeWindows | |_closeWindows |

Figure 9: Prototype workflow

following smart devices: heaters, thermometers, windows, and a
fridge. The devices provide the services listed in Table 2.

Table 2: Smart home devices and services.

Device Service Description

Window openWindows Opens the windows (by actuators)
closeWindows Closes the windows (by actuators)

Thermometer getTemeprature Returns the home temperature

Heater switchHeaterOn Switches on the heating
switchHeaterOff Switches off the heating
getStatus Returns true if the heating is on

Fridge replaceFilter Tells if the filter should be replaced
foodLevellow Returns true if food level is low

We created a simple ontology for each of the devices as shown
in Fig. 8. We also created an abstract workflow that aims at keeping
the smart home temperature at 22°C, which is depicted in Fig. 9. The
application reads the temperature from the thermometers. If the
temperature is less than 22°C, it calls the heaters’ switchHeaterOn
service to switch on the heating and the windows’ closeWindows to
close the windows. If the temperature is higher than 22°C, it turns off
the heater (calling switchHeater0ff). If the temperature is higher
than 22°C it also opens the windows (by calling openWindows).

7.4 Behavior

Fig. 10 shows a snapshot of the controller ontology after parsing
the device ontologies and constructing the SoS tree. The ontology

An Ontological Architecture for Principled and Automated System of Systems Composition

= m]

Property assertions: controller

Object property assertions

mm providesService switchHeaterOff
mm providesService replaceFilter

mm providesService getHeaterStatus
mm providesService switchHeaterOn
mm providesService servicesSelector
mm providesService getTemprature
mm providesService closeWindow
mm providesService openWindow
mm providesService foodLevelLow

Figure 10: Object properties of the controller ontology

Table 3: Experimental cases of the workflow in Fig. 9

Temp. Invoked Services

10°C getTemperature — switchHeaterOn — closeWindows
18°C getTemperature — switchHeaterOn — closeWindows
22°C getTemperature — switchHeaterOff — closeWindows
23°C getTemperature — switchHeaterOff — closeWindows
26°C getTemperature — switchHeaterOff — openWindows

shows that the controller provides services that are provided by the
devices themselves (see Fig. 8) in addition to servicesSelector,
which selects concrete services for the abstract workflow.

The execution starts with reading the temperature from the ther-
mometer by calling the getTemeprature service. Table 3 presents
the experimental cases and the invoked cases for each case. As the
table illustrates, the sequence of invoked services complies with
the abstract workflow provided by the developer to the controller,
despite the developer not hard-coding the required connections
between devices. For example, when the temperature is 22°C, the
execution unit invokes the getTemperature, switchHeaterOff,
and closeWindows services respectively, which complies with the
abstract workflow (Fig. 9).

This case study demonstrates the potential for easing the devel-
opment of IoT applications, where application developers do not
need to know the details of smart device APIs. Definition of device
ontologies (by vendors) and an abstract application workflow (by
smart home developer) are sufficient for runtime application syn-
thesis and execution by the proposed architecture. Table 4 compares
the tasks required from the smart home developers to implement
this case study in both the classical and holonic approaches.

Table 4: Tasks required from developers to implement the
smart home case study.

Classical approach Holonic approach

1. Understand the services, APIs, and proper- 1. Define the abstract
ties of the devices listed in Table 2. workflow of the re-

2. Design the composition of services based quired functionality on
on required functionality and context. the controller.

3. Develop code to compose the services. 2. Deploy the devices

4. Deploy the system. listed in Table 2.

8 CASE STUDY II: DYNAMIC CLUSTER
MANAGEMENT
In this case study we center our attention on holon interaction. We

demonstrate how holons of similar ontologies (i.e., containing the
same services) and that are in constant movement can interact with

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

each other despite continuous creation and modification of new
SoSs. Our context here is cluster management using Apache Mesos.

8.1 Background and challenges

Inspired by heterogeneous fog clusters, we set a scenario where
device interaction is constant. We use Apache Mesos [14], an orches-
tration tool commonly used to manage resources that are shared
between different applications and their sub-tasks. In effect, Mesos
enables the viewing of data centers and other computing clusters
as a single consolidated resource.

Although Mesos is a very useful utility, it was designed mainly
for shared resources in relatively stable environments such as data
centers. As such, the computing cluster can only change (i.e., grow
or shrink) through manual modifications to the configuration by
the user. Mesos was not designed to work in an environment where
node status is constant flux due to movement, unreliable power,
or communication outages. These are typical challenges in fog
computing [35, 37]. Mesos is also designed to work in a hierarchical
fashion, whereby Agents (worker nodes) can only communicate
directly to the Master but not through other Agents [14, 17].

8.2 Overview of our approach

Both of the above restrictions can be overcome using the holonic
ontology, which offers opportunistic composition (overcoming the
first restriction) and horizontal composition between self-describing
clusters in the form of holons (second restriction). We draw a sce-
nario here to demonstrate this using containers running over an
unreliable infrastructure such as edge PoPs [9]. In this scenario,
each node can be a Master or an Agent. Following the basic design
of Mesos, Masters are responsible for dispatching containers to the
Agents, who in turn operate the containers.

8.3 Experimental setup

A simple example is given here to illustrate how holons could be
used to facilitate the union of Mesos clusters with mobile nodes
without the need for establishing direct communication. Due to the
high mobility of nodes during the tests, the composition of SoSs
is dynamic, creating several additions and removals of the Mesos
Services. This is something that would have been prohibitive to
accomplish using Mesos’ manual configuration.

We tested this use case study using 100 devices that can move
freely. Every device is considered a node for Mesos and is individu-
ally defined as a holon at the beginning of the experiment. Shortly
afterwards (a minute later), bigger holons begin to be created, con-
taining one or more devices. After that, each holon starts an internal
process of randomized leader election [26] to elect a master from
amongst the constituent devices.

Each holon contains parameters to define its identifier, mobility,
and whether or not it is a Mesos Master (e.g., Fig. 11). Additionally,
each holon contains three services: AskForMaster is performed
every time two holons reach each other for the first time, where
it would return the ID of the Master. After a holon receives the
request of whom is its Master, it will perform the SendMaster
service to send such ID. BridgeToMaster is used by the nodes to
communicate with the Master through its Agents. Fig. 12 shows
an abstract workflow of the experiment when a node reaches a

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

Property assertions: NodeA =0

Object property assertions =
m hasParameter NodeA-mobility
W hasParameter NodeA-id
W hasParameter NodeA-isMaster
i providesService NodeA-AskForMaster
W provi vice NodeA

mm providesService NodeA-BridgeToMaster

Figure 11: The ontology model of Mesos NodeA.

searchNewDevices

exchangeOn(olog\esI——)l updateOwnOnto\og\esl

sendMaster |<—|

askForMaster |

Detected?

sendNewOntologyTo sendNewOntologyTo
AllNodesInCluster ClusterMaster

Figure 12: Prototype workflow of Dynamic Cluster Manage-
ment when a node reach another node.

sendNewOntology To
AliNodesInCluster

receiveNew updateOwn
Ontology Ontologies

'

ClusterMaster
Figure 13: Prototype workflow of Dynamic Cluster Manage-
ment when a node receive a new ontology.

new node from another Mesos cluster. A second abstract workflow
has been created when a node receives a new ontology, which is
depicted in Fig. 13. Both abstract workflows are used by the nodes
to allow dynamic union of Mesos clusters with mobile nodes.

8.4 Behavior

Fig. 14a presents the starting point with holons H; and Hy. Hj is
formed of four nodes: nodeA, working as a Master, while nodeB,
nodeC and nodeD as Agents. On the other hand, Hj is formed of
two nodes: nodeF, a Master, and nodeE, an Agent. In this case, H;
and Hj cannot reach each other.

As nodeC and nodeE come in range of one another (Fig. 14b),
they are triggered to exchange ontologies and call AskForMaster
and subsequently SendMaster. The orange arrow in the figure
represents this interaction.

Then, nodeC and nodeE broadcast their new ontologies to neigh-
bors (Fig. 14c). Now, H; and Hj are not just in contact with each
other, they are part of a new super-holon H3, which is the union
of H; and H as all their nodes receive the updated ontology and
adopt it as their new ontology.

A. Elhabbash et al.

NodeB-Agent .
NodeB-Agent NogeC-Agent B NodeC-Agent

/ NodeE-A \i
NodeE-Agent —/ ode Eenl
B N odeA-Mast - i NodeA-Master NodeF-Master
NodeD-Aggnte = podeElgfster NodeD-Agent H

H 2
2
H,

(b) C and E come in range, interact

H,

(a) H; is unreachable from H,

NodeB*Agent NogeC-Agent NOdAge"t Node€-Agent

-
f | NodeE-A t
B NodeE-Agent "
o Bl \ 0 deA-Master NodeF-Master
NodeA-Master NodeF-Master \odep-Agent
NodeD-Agent Hz
H, H
& H
H, 3
(d) A SoS, Hs, is created

(c) Ontologies exchanged & updated

Figure 14: How to use holons to construct a SoS of Mesos
clusters running on constantly moving nodes.

Table 5: Tasks required from Mesos developers to imple-
ment the dynamic cluster management case study.

Classical approach Holonic approach

Repeatedly:
P Y 1. Define the cluster node as a
1. Select a cluster Master. hol. e th tol
2. Add nodes to cluster. olon using the ontology.
. 2. Implement the cluster Master
3. Add services to cluster. . .
election algorithm.
4. Remove nodes from cluster.
. 3. Deploy the holons.
5. Remove services from cluster.

All Agents are sharing the Masters nodeA (from H;) and nodeF
(from Hy). This is achieved using the service BridgeToMaster, per-
formed continuously by nodeC and nodeE while they can reach
each other. The resulting SoS H3 has 2 Master nodes and 4 Agents.
Therefore, each of the two Masters can communicate to all Agents
in Hs as if they were connected directly. Similarly, this approach is
also able to deal with Master mobility as long as the basic structure
of a Mesos cluster is not broken down.

As such, the ontological exchange and reasoning of holons al-
lows Apache Mesos to transcend its innate design shortcomings and
enables it to form a dynamic cluster structure. Achieving such struc-
ture through manual configuration (which is the only way possible
using native Mesos) significantly restricts adaptation and reduces
cluster efficiency by a factor of 5 compared to using holons. Table 5
compares the tasks required from Mesos developers to implement
this case study in both the classical and proposed approaches.

8.5 Simulations

For evaluating the efficacy of automated expansion of Mesos clus-
ters through the use of holon ontologies, we used the Omnet++
discrete-event simulation framework [36] to simulate 100 nodes. We
set the node transmission range to 20m and their speed to 1.43m/s,
an average walking speed [20]. Additionally, the nodes used the
individual-level (random walks) [4] as a mobility model.

We used Mesosaurus [22] to create task loads to test the perfor-
mance of the formed clusters. Specifically, we seek the length of

An Ontological Architecture for Principled and Automated System of Systems Composition

304

201 Nm?‘wrm
RGN

154

Task execution time (s)

51 —e— Automatic configuration using holons
—— Native configuration (with scripts)

1 1 1 1
0 20 40 60 80 100
Simulation time (min)

Figure 15: Computational tasks are completed faster on dy-
namic Mesos clusters constructed using holons as opposed
to native Mesos cluster configurations.

time required by a Mesos Master to perform a specific task. The
task created for this experiment is one that a Master with 5 Agents
will normally perform in about 20 seconds. If more Agents are
employed, execution time is expected to decrease.

Fig. 15 plots the average task execution time across all Mesos clus-
ters after 20 experiment runs. Using Mesos’ native cluster manage-
ment method, task execution time decreases slightly (from ~ 23s)
as Masters expand their clusters through the use of scripts that
add nodes they encounter in their environment. This improvement
in performance, however, eventually plateaus (= 20s) as churn
overwhelms Masters through frequent configuration management,
despite the use of automated scripts. On the other hand, using
holons introduces some overhead in terms of ontology creation and
reasoning. This results in a slightly inflated initial execution time
(~ 27s). However, as nodes encounter others during the lifetime of
the simulation, Mesos clusters identifying as holons expand dynam-
ically according to changes in their environment. Compiling and
reasoning overheads soon become relatively insignificant, enabling
Mesos holons to achieve an average of 17s execution time, a 15%
improvement in performance.

9 DISCUSSION OF CASE STUDIES

The above experiments show how we are able to automatically self-
discover and compose systems through rich ontological description
of elementary systems that are required to realize a SoS. We now
reflect on the research questions we formulated in §3.

9.1 Abstractions for SoS representation

Holons offer the ability for systems to richly describe themselves,
and independently reason about the change in their environment
and how it might affect their set up and operation. This concept
enables systems to reflect on their existence and how they fit into
what is around them. This in line with the ethos of reflective mid-
dleware [19], which enables systems to build a representation of
itself that it can then adapt. In addition, holonic representation al-
lows systems to transfer such knowledge about themselves to other
systems they get in touch with. Along with this, each system is able
to build a representation of the behavior of systems in its vicinity
and form more complex systems without prior arrangement.

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

There is an assumption that each system needs to start with a
representation of itself in its simplest form as an ontology. Because
of this, we built our ontological architecture on the most generalize
and easy-to-use ontology available in the literature. Furthermore,
using such framework makes it easy to create ontologies, which is
a relatively small development overhead of similar or less scale of
defining a system’s API. However, this enables the system to adapt
after its deployment and unlock a new world of complex system
creation that facilitates new forms of context-aware applications.

9.2 Techniques for SoS composition

The presented case studies demonstrated how a developer could
define desired behavior at a high level (summarized in Tables 4—
5), and a system is subsequently composed of other sub-systems
to align with this behavior. Our architecture allows systems to
independently reason about their environment, and how changes
might affect their set up and operation. This is a powerful concept
as it maintains the separation of concerns, which is crucial for
effective system development, whilst also reaping the rewards of
complex system formation through autonomous composition.

Furthermore, the holonic ontology could be applied at different
levels: at the atomic service level (e.g., temperature sensor), at a
system component level (e.g., smart sensors), or at a higher system
level (e.g., smart home controller). This enables developers to write
behavior at different levels of granularity with the same modeling
effort, which is especially beneficial for dynamic environments such
as the IoT where context-dependent behavior could be sought at
different levels.

9.3 SoS adaptation

The presented architecture exploits the holonic ontology and main-
tains the holonic lifecycle to fully support the vision of autonomous
SoS composition and adaptation presented in this paper. The archi-
tecture continuously updates the holonic ontology allowing up-to-
date SoS state exchange and enables timely response to changes.
This allows holons to detect failures and discover new functionali-
ties a holon needs to rebuild a SoS. As demonstrated in the cluster
management case study (§8), adaptation is fully autonomous. The
system can, for example, detect the arrival of new working nodes
and add them to the cluster.

Furthermore, human involvement is only needed when major
requirements changes are required, i.e., at the SoS level. For exam-
ple, a change in the smart home requirements that demands the
deployment of new devices might require updating the behavior
of the smart home applications, i.e., developers need to adapt the
abstract workflows. However, such intervention is guaranteed to
be minimal as developers do not need to know the low-level details
of post-deployment systems such as device-specific APIs. There-
fore, our proposed architecture provides a generic framework for
supporting high-level behavior adaptation to real implementation.

10 QUANTITATIVE EVALUATION

As mentioned, our proposed framework includes means of parsing
holon ontologies to build a tree that represents SoS construction,
and subsequently rendering the tree to disseminate the modified
ontologies that reflect SoS evolution. We conducted experiments to

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

> ServicesPerHolon=20

» 03 % +— ServicesPerHolon=40 e
° 5 ServicesPerHolon=60 /
S 025 3 “— ServicesPerHolon=80 /
3 2 ServicesPerHolon=100 /
L / ServicesPerHolon=1000
0.2) /
0E> / £ +— ServicesPerHolon=2000 y
E / [=
= 015 / o 40 /
o / £ /
c 0.1 =
G 15} -
& 3
© 2 20 A
o 005 5] e
o -
——§— - ——B—N

0
0 200 400 600 800 1000 20 40 60 80 100 200 400
No. of services No. of holons

(a) Parsing time (b) Rendering time

Figure 16: (a) Ontology parsing time as the number of ser-
vices per holon increases. (b) Rendering time for holons of
increasing size (and, thus, ontology complexity) as the num-

ber of holons increases.

evaluate the feasibility and correctness of this approach. Specifically,
we investigate the time required to parse and render the ontologies
at different scales, and we assess the validity of these stages. From
this, we extract conclusions about the ability of using holons to
compose SoS during runtime and at scale. The platform used in
the experiments is Intel Core i7 with 16GB RAM, running Linux
Ubuntu 16.04 and Java SE v1.8.0. Results shown are the mean values
from 100 experiment repetitions.

10.1 Parsing

This first experiment focuses on evaluating the parsing time defined
as the time of converting a received ontology into a tree (§6). Recall
that that the tree contains the holon object as a root and the services
provided by/via it as children. So, we vary the number of children
(i.e., services) as the main dimension affecting parsing scalability.
In Fig. 16a, we observe that parsing time increases linearly with
the number of services, amounting to < 0.35s for a very complex
SoS that provides 1,000 services either directly or indirectly. We
find this level of complexity to be acceptable, as it indicates the
feasibility of parsing an increasing number of holons in a SoS.

10.2 Rendering

We now evaluate the rendering time defined as the time to convert
a holon tree into an ontology to be disseminated. We vary both the
number of neighbor holons (children) and the number of their ser-
vices (leaves). The plot in Fig. 16b demonstrates that the rendering
overhead increases both with the number of holons and the number
of services per holon. This is acceptable for SoSs with up to 100
services per holon, where rendering overhead is ~ 5s. However this
quickly inflates for holons with 1,000 or more sub-systems, where
it could take up to a minute to create an ontology that could be
used for composition.

10.3 Validation

In this subsection, we validate the output of the parsing and ren-
dering operations using two experiments.

In the first experiment we adopt the process depicted in Fig. 17a.
We create ontologies for 100 holons with random values for each
of their parameter and service values. We then pass the ontology
files to the OWLParser, which creates the holon trees. The trees are
then passed to the OWLRenderer to render them into ontologies.

A. Elhabbash et al.

reconstructed
ontology

original
ontology

OWLParser @{OWLRenderer

constructed
b. composition tree

query A

rendered
ontology

Figure 17: Our two methods to validate ontology parsing and
rendering experiments. Parsing and rendering are deemed
valid when the information returned by the queries match.

We then query (using OWLAPI) both the created ontologies and
the rendered ones to check if the results are equivalent. For all 100
ontologies, the returned values were indeed equivalent.

In the second experiment, we adopt the process portrayed in
Fig. 17b. Here, we synthesized 100 compiled trees, each representing
a SoS. We then passed the trees to the OWLRenderer to render them
into a SoS ontology for each tree. Then we queried both the rendered
ontologies and the created trees to compare the results. Again, for
all of the 100 cases, the returned values were equal.

11 CONCLUSION

We propose an approach for the dynamic construction of distributed
systems of systems (SoSs). The approach is based on two key ideas.
First, we define the concept of a holon as a self-describing sys-
tem, which could span from atomic to complex distributed sys-
tems. Holons need to be prepared for autonomic integration with
other holons. This is achieved by comprehensively describing them
using an ontology that enables both self-awareness and context-
awareness. Second, an architecture for SoS construction is proposed
to make use of the holon description to discover, reason about their
functionalities, and integrate them to form more complex SoS.

We demonstrate the feasibility of our approach through two
case studies that implement contrasting SoS construction scenarios.
The cases studies show that our approach reduces the development
complexity of SoS by abstracting system heterogeneity using holon
descriptions and their autonomic manipulation at runtime. We also
evaluate scalability and validity through experimentation, conclud-
ing that our approach is realistically feasible with performance
exhibiting a linear trend for manipulating and reasoning about
descriptions.

This novel contribution has strong potential to be applied in
various application fields beyond those covered in our case studies.
Similarly, our architecture could be modified to cater for domain-
specific interactions if particular situational-awareness are needed.
Moreover, we are extending this work by building tools that allow
very high level specification of desired SoS construction behavior
and evolution.

12 ACKNOWLEDGMENTS

This work was supported by CHIST-ERA under UK EPSRC grant
EP/MO015734/1 (DIONASYS).

http://www.dionasys.eu/

An Ontological Architecture for Principled and Automated System of Systems Composition

REFERENCES

(1]

A

(6

=

[7

[

[10]

(11

[12

[13]

[14]

[15]

[16

[17]
(18]

[19]

R. Agarwal, D. G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza, L. Sanchez, N.
Georgantas, and V. Issarny. 2016. Unified IoT ontology to enable interoperability
and federation of testbeds. In World Forum on Internet of Things (WF-IoT). 70-75.
https://doi.org/10.1109/WF-10T.2016.7845470

Muhammad Intizar Ali, Pankesh Patel, Soumya Kanti Datta, and Amelie Gyrard.
2017. Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT
Applications. Open Journal of Internet Of Things (OFIOT) 3, 1 (2017), 75-90.

R. R. Aschoff and A. Zisman. 2012. Proactive adaptation of service composition.
In Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). ACM, 1-10. https://doi.org/10.1109/SEAMS.2012.6224385

Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime
Lenormand, Thomas Louail, Ronaldo Menezes, José] Ramasco, Filippo Simini,
and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics
Reports (2018).

Luciano Baresi and Liliana Pasquale. 2010. Live Goals for Adaptive Service Com-
positions. In Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). ACM, 114-123. https://doi.org/10.1145/1808984.1808997
Gordon S Blair, Yérom-David Bromberg, Geoff Coulson, Yehia Elkhatib, Lau-
rent Réveillére, Heverson B. Ribeiro, Etienne Riviére, and Frangois Taiani. 2015.
Holons: Towards a Systematic Approach to Composing Systems of Systems.
In Workshop on Adaptive and Reflective Middleware (ARM). Article 5, 6 pages.
https://doi.org/10.1145/2834965.2834970

Abdessalam Elhabbash, Gordon S. Blair, Gareth Tyson, and Yehia Elkhatib. 2018.
Adaptive Service Deployment using In-Network Mediation. In International
Conference on Network and Service Management (CNSM). 170-176.

Yehia Elkhatib. 2015. Building Cloud Applications for Challenged Networks. In
Embracing Global Computing in Emerging Economies, Ross Horne (Ed.). Commu-
nications in Computer and Information Science, Vol. 514. Springer International
Publishing, 1-10. https://doi.org/10.1007/978-3-319-25043-4_1

Yehia Elkhatib, Barry F. Porter, Heverson B. Ribeiro, Mohamed Faten Zhani,
Junaid Qadir, and Etienne Riviere. 2017. On Using Micro-Clouds to Deliver the
Fog. Internet Computing 21, 2 (2017), 8-15. https://doi.org/10.1109/MIC.2017.35
Dieter Fensel. 2001. Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Springer.

Gabor Fodor, Erik Dahlman, Gunnar Mildh, Stefan Parkvall, Norbert Reider,
Gyorgy" Miklés, and Zoltan’ Turanyi. 2012. Design aspects of network assisted
device-to-device communications. [EEE Communications Magazine 50, 3 (March
2012), 170-177.

M. G. Gillespie, H. Hlomani, D. Kotowski, and D. A. Stacey. 2011. A knowledge
identification framework for the engineering of ontologies in system composition
processes. In Conference on Information Reuse Integration. 77-82. https://doi.org/
10.1109/IR1.2011.6009524

A. Herzog, D. Jacobi, and A. Buchmann. 2008. A3ME - An Agent-Based Middle-
ware Approach for Mixed Mode Environments. In International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM).
191-196. https://doi.org/10.1109/UBICOMM.2008.78

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center.. In Symposium on Networked
Systems Design and Implementation (NSDI). USENIX.

Matthew Horridge and Sean Bechhofer. 2011. The OWL API: A Java API for
OWL Ontologies. Semantic Web 2, 1 (2011), 11-21.

Danny Hughes. 2018. Self Adaptive Software Systems are Essential for the Inter-
net of Things. In International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). ACM, 21-21.

Dharmesh Kakadia. 2015. Apache Mesos Essentials. Packt Publishing Ltd.

M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil. 2015. An Ar-
chitecture Framework for Experimentations with Self-Adaptive Cyber-physical
Systems. In Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). ACM, 93-96. https://doi.org/10.1109/SEAMS.2015.28

Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. 2002. The Case for
Reflective Middleware. Commun. ACM 45, 6 (Jun 2002), 33-38. https://doi.org/
10.1145/508448.508470

Robert V Levine and Ara Norenzayan. 1999. The pace of life in 31 countries.
Journal of Cross-Cultural Psychology 30, 2 (1999), 178-205.

Mark W. Maier. 1998. Architecting principles for systems-of-systems. Systems
Engineering 1, 4 (1998), 267-284.

Mesosphere. 2016. Mesosaurus. https://github.com/mesosphere/mesosaurus.
Behrokh Mokhtarpour and Jerrell Stracener. 2017. A Conceptual Methodology
for Selecting the Preferred System of Systems. IEEE Systems Journal 11, 4 (Dec
2017), 1928-1934.

Henry Muccini, Mohammad Sharaf, and Danny Weyns. 2016. Self-Adaptation
for Cyber-Physical Systems: A Systematic Literature Review. In Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). ACM,
75-81. https://doi.org/10.1145/2897053.2897069

[25

[26

[27

[28

™~
20,

[30

(31]

%
&,

(33]

[34

[35

'S
2

[37

[38

~
=

[42

SEAMS 2020, May 25-26, 2020, Seoul, South Korea

Mark A. Musen et al. 2015. The Protégé Project: A Look Back and a Look Forward.
AI Matters 1, 4 (Jun 2015), 4-12. https://doi.org/10.1145/2757001.2757003

Koji Nakano and Stephan Olariu. 2000. Randomized Leader Election Protocols
in Radio Networks with no Collision Detection. In Algorithms and Computation.
Springer Berlin Heidelberg, Berlin, Heidelberg, 362-373.

Anne H. Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal, and Quan Z. Sheng.
2017. IoT Middleware: A Survey on Issues and Enabling Technologies. Internet of
Things Journal 4, 1 (Feb 2017), 1-20. https://doi.org/10.1109/JI0T.2016.2615180
Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and
Jan Peleska. 2015. Systems of Systems Engineering: Basic Concepts, Model-Based
Techniques, and Research Directions. Comput. Surveys 48, 2 (2015), 18:1-18:41.
https://doi.org/10.1145/2794381

Vatsala Nundloll, Yehia Elkhatib, Abdessalam Elhabbash, and Gordon S Blair.
2020. An Ontological Framework for Opportunistic Composition of IoT Systems.
In International Conference on Informatics, IoT, and Enabling Technologies (ICIoT).
IEEE.

Kai Petersen, Mahvish Khurum, and Lefteris Angelis. 2014. Reasons for bot-
tlenecks in very large-scale system of systems development. Information and
Software Technology 56, 10 (2014), 1403-1420. https://doi.org/10.1016/j.infsof.
2014.05.004

Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges, Peter
Rigole, Tim Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and Koen
De Bosschere. 2004. Towards an Extensible Context Ontology for Ambient
Intelligence. In European Symposium on Ambient Intelligence. Springer, 148-159.
Luca Sabatucci, Carmelo Lodato, Salvatore Lopes, and Massimo Cossentino. 2015.
Highly Customizable Service Composition and Orchestration. In Service Oriented
and Cloud Computing, Schahram Dustdar, Frank Leymann, and Massimo Villari
(Eds.). Springer International Publishing, 156-170.

M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C. H. Lung. 2013. Smart Home:
Integrating Internet of Things with Web Services and Cloud Computing. In
International Conference on Cloud Computing Technology and Science (CloudCom),
Vol. 2. IEEE, 317-320. https://doi.org/10.1109/CloudCom.2013.155
Jean-Baptiste Soyez, Gildas Morvan, Rochdi Merzouki, and Daniel Dupont. 2017.
Multilevel Agent-Based Modeling of System of Systems. IEEE Systems Journal
11, 4 (Dec 2017), 2084-2095.

Luis M. Vaquero, Felix Cuadrado, Yehia Elkhatib, Jorge Bernal-Bernabe, Satish N.
Srirama, and Mohamed Faten Zhani. 2019. Research Challenges in Nextgen
Service Orchestration. Future Generation Computer Systems 90 (Jan 2019), 20-38.
https://doi.org/10.1016/j.future.2018.07.039

Andras Varga and Rudolf Hornig. 2008. An overview of the OMNeT++ simulation
environment. In Conference on Simulation Tools and Techniques for Communica-
tions, Networks and Systems. ICST, 60.

Blesson Varghese, Philipp Leitner, Suprio Ray, Kyle Chard, Adam Barker, Yehia
Elkhatib, Herry Herry, Cheol-Ho Hong, Jeremy Singer, Fung Po Tso, Eiko Yoneki,
and Mohamed Faten Zhani. 2019. Cloud Futurology. IEEE Computer 52, 9 (Sep
2019), 68-77. https://doi.org/10.1109/MC.2019.2895307

Bahtijar Vogel and Dimitrios Gkouskos. 2017. An Open Architecture Approach:
Towards Common Design Principles for an IoT Architecture. In European Con-
ference on Software Architecture (ECSA). 85-88. https://doi.org/10.1145/3129790.
3129793

W3C SSN XG. 2011. Review of Sensor and Observations Ontolo-
gies. https://www.w3.0rg/2005/Incubator/ssn/wiki/Review_of_Sensor_and_
Observations_Ontologies.

K. Xu, X. Wang, W. Wei, H. Song, and B. Mao. 2016. Toward software defined
smart home. IEEE Communications Magazine 54, 5 (May 2016), 116-122. https:
//doi.org/10.1109/MCOM.2016.7470945

Ibrar Yaqoob, Ejaz Ahmed, Ibrahim A. T. Hashem, Abdelmuttlib I. A. Ahmed,
Abdullah Gani, Muhammad Imran, and Mohsen Guizani. 2017. Internet of Things
Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges.
IEEE Wireless Communications 24, 3 (2017), 10-16. https://doi.org/10.1109/MWC.
2017.1600421

Xinfeng Ye. 2006. Towards a Reliable Distributed Web Service Execution Engine.
In International Conference on Web Services (ICWS). IEEE Computer Society,
595-602. https://doi.org/10.1109/ICWS.2006.131

https://doi.org/10.1109/WF-IoT.2016.7845470
https://doi.org/10.1109/SEAMS.2012.6224385
https://doi.org/10.1145/1808984.1808997
https://doi.org/10.1145/2834965.2834970
https://doi.org/10.1007/978-3-319-25043-4_1
https://doi.org/10.1109/MIC.2017.35
https://doi.org/10.1109/IRI.2011.6009524
https://doi.org/10.1109/IRI.2011.6009524
https://doi.org/10.1109/UBICOMM.2008.78
https://doi.org/10.1109/SEAMS.2015.28
https://doi.org/10.1145/508448.508470
https://doi.org/10.1145/508448.508470
https://github.com/mesosphere/mesosaurus
https://doi.org/10.1145/2897053.2897069
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1145/2794381
https://doi.org/10.1016/j.infsof.2014.05.004
https://doi.org/10.1016/j.infsof.2014.05.004
https://doi.org/10.1109/CloudCom.2013.155
https://doi.org/10.1016/j.future.2018.07.039
https://doi.org/10.1109/MC.2019.2895307
https://doi.org/10.1145/3129790.3129793
https://doi.org/10.1145/3129790.3129793
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
https://doi.org/10.1109/MCOM.2016.7470945
https://doi.org/10.1109/MCOM.2016.7470945
https://doi.org/10.1109/MWC.2017.1600421
https://doi.org/10.1109/MWC.2017.1600421
https://doi.org/10.1109/ICWS.2006.131

	Abstract
	1 Introduction
	2 Problem Space and Related Work
	3 Research Strategy
	4 The Holonic Lifecycle
	5 The Ontological Model
	5.1 Background
	5.2 Extensions
	5.3 Application

	6 SoS Construction Model
	6.1 Composition model
	6.2 Reasoning architecture

	7 Case Study I: Autonomic Smart Home
	7.1 Background and challenges
	7.2 Overview of our approach
	7.3 Experimental setup
	7.4 Behavior

	8 Case Study II: Dynamic Cluster Management
	8.1 Background and challenges
	8.2 Overview of our approach
	8.3 Experimental setup
	8.4 Behavior
	8.5 Simulations

	9 Discussion of Case Studies
	9.1 Abstractions for SoS representation
	9.2 Techniques for SoS composition
	9.3 SoS adaptation

	10 Quantitative Evaluation
	10.1 Parsing
	10.2 Rendering
	10.3 Validation

	11 Conclusion
	12 Acknowledgments
	References

